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CHAPTER IV - PART A

STRUCTURAL ANALYSIS OF HOMOGENEOUS AXISYMMETRIC

RADOME SHELLS UNDER MECHANICAL, THERMAL AND

INERTIAL LOADING

by Frank Lane
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- shell type appro:iniationo. or to shell analyses limited to axinyuimetrical

R AR

A. STRUCTURAL ANALYSIS OF HOMOGENEOUS

AXISYMMETRIC RADOME SHELLS UNDER

MECHANICAL, THERMAL. AND INERTIAL LOADING

l. INTRODUCTION

Up to the present time shell analyses carried to the i)oint of numerical

calculation have been restricted to membrane-type approximations, shallow-

loadings. The present development combines the tochniq\;ec of tensor analysis,
diﬁe.rential geometry, and variational calculus with the capabilitiea of large-
scale digital computing machinery to permit solution of the shell problems
encountered in radome applications without restriction on geometry or form of r
loading distribution, and with complete consideration of both membrane and
flexural effects. The var‘iational approach pormita treatment of static and
dynamic or vibratory loadings by related methods and permits introduction of
thermal effects (‘oth material property variation and initial stress

effects) without major complication. .

The present report describes the formulation of the radome problem for
homogeneous vadome shell types with particular emphasis on ogive, cone, and
hemispherical shapes. The techniques developed are, however, equally
applicable to other shapes with completely general loading distributions and
a\;bject to arbitrary temperature variations. Within the framework of the
tensor methods used, the internal displacements (and velocities in dynamic
problems) are expressed as first-order tensors, stresses and strains in terms

of second-order tensors, and stress-strain relations, in terms of fourth-order
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| tensors, all in curvilinear coordinates appropriate to the radome shell middle

surface. All elastic, thermal, and in dynamic applications, inertial aspects

¥

of the problem are formulated in general tensor notation as is the differential
geometry of the shell middle surface.

Actual numerical computations are rendered feasible by utilizing the
above-described intrinsic shell theory in conjunction with an energy or
variational method. Final computation reduces to the solution of an algebraic
problem, non-homogeneous in the case of response to static, dynamic, or
thermal loading, and homogeneous in the case of free vibration. The entire
development, for certain conditions, proceeding from the.prescription of
initial shell geometry and loading to the final resulting deformation and stress
distribution is to be programmed for execution upon the IBM 704 digital
computer.

The present section describes the analytical phases of an investigation
whose ultimate objective is the development of an efficient and accurate
program for the structural analysis of thermally and mechanically loaded
axisymmetric, homogeneous radome shell structures by means of high-speed
digital computing equipment. The end-product sought is a program which
requires but a minimum of input data describing the shell geometry and the
imposed thermal and mechanical loading distributions and which utilizes this
data to generate solutions of the structural problem. The solutions are to
include adequately detailed descriptions of the distributions of deformation and

stress throughout the shell. Moreover, the program is to be sufficiently

4ADD TR 5322 662
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general to permit inclusion of varying degrees of edge fixity as well as the
presence or absence of an elastic central boom.

The analysis is based on a general formulation of the axisymmetric shell
problem in curvilinear coordinates and takes advantage, from the very outset,
of the knowledge that the problem is to be solved numerically. This permits
an approach which relies upon a minimum of physical assumptions or
approximations. The only such assumptions introduced are the following:

(a) The shell-type assumption that the normal stress component in the direction
normal to the shell middle surface may be neglected relative to the other
induced stresses; (b) The shell-type assumption that normals to the middle
surface remain straight under deformation; (c) The calculation of the slopes

of the above normals under the assumption that normals to the middle surface
remain normal under deformation; (d) The assumption that Young's modulus .

¢ and Poisson's y may be considered constant throughout the shell and equal
to their respective mean values over the temperature range experienced by the
shell for any given problem. This last assumption may be dropped when
axisymmetrical loading is considered, but results in an essential simplification
for asymmetric conditions.

The fact that it is recognized in advance that numerical methods are to be
used makes it unnecessary to use any of'the standard shell approximations of
expanding in powers of the normal coordinate, and neglecting various terms as
small. Incidentally, it is this type of approximation which accounts for the

major portion of the discrepancies noted between the linear shell theories of
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various investigatorsz.

In view of the current interest in the unified antenna-radome concept,
the analysis presented herein is made sufficiently general to encompass the
case of the truncated axisymmetric radome with central boom. The formula-
tion, however, is completely gene:al and, aside from certain problems which
arise at the apex of a complete shell, suffers from no essential complications
when applied to general shells of revolution with or without a central boom,

The technique employed herein ln:inges on the energy approach to
structural analysis and requires first an extension of the energy principle
to permit. inclusion of thermal effects. For this purpose the so-called
“free energy'' of Hempl is utilized and is specialized from the general thermo-
elastic three-dimensional form given by Hemp to the form appropriate to shell
analysis. The use of the energy technique together with a general tensorial
formulation of the energy expression in curvilinear coordinates appropriate
to the sheil middle surface virtually eliminates all possibility of error due to
neglect of terms or inaccurate or incomplete resolution of forces required by
equilibrium methods, Correspondingly, the macroscopic stresses or stress-
resultants of the usual shell theoey are by-passed, the entire problem being
formulated in terms of displacements. Furthetmore, the difference approxi-
mation required by the numerical solution technique is viewed as a direct
method in the calculus of variations: The difference approximation is

introduced directly into the energy integral (thereby converting this integral to

a summation) and the equilibrium problem reduces to a minimum problem with
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respect to the mesh-point values of the displacements. This technique has
several advantages: First, it insures that the numerical problem, in
difference form, has a pésitive-deﬁnite matrix, thereby guar_ar_xteein.é the
convergence of iterative solution techniques. Second, it makes the introduction
of quite general boundary conditions extremely simple and nearly automatic,
and finally, it eliminates any necessity of performing the operation of first-
variation to obtain the Euler equations and boundary conditiong. of the
variational problem, followed by differencing of these equations. Rather, the
differencing in the energy expression proper provides the matrix of the
numerical problem directly and automatically insures the appropriate
expression of boundary conditions in difference form whethez t;lese caorrespond

to fixed, ‘partially fixed, or free-edge situations. °
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2. GECOMETRY AND COORDINATE DEFINITION

Figure 1l shows, for the general shell of revolution, the yi coordinate
system utilized together with the associated covariant metric tensor (aij)
components. The metric tensor elements are expressible completely in
terms of meridian slope, B, and the two principal radii of curvature R, and
R,. The orthogonality of the coordinates insures the diagonal nature of the
metric tensor and the simple relations for the contravariant form aij. The
quantity J, which is equal to the square root of the determinant of ajj» gives
the volume element for the yl coordinate system and will be needed for
formulation of the encrgy integrals. The coordinate y3 gives the inward
distance locally normal to the shell middle surface, y? gives meridional
distance along the middle surface from the apex of the middle surface
(extended, if the actual shell is truncated), and yl is the longitude angle in
radians.

Figure 2 illustrates the same data specialized to the case of the trun-
cated cone. In this case the variable radii of curvature R, and R, are re-
placed, respectively, by y* tan\ and @, while the generally variable
meridian-tangent angle, 3, becomes simply the constant semi-vertex
angle N . The metric elements simplify correspondingly.

The contravariant form of the displacement vector corresponding to
the yi coordinate system is denoted by gi and is to be distinguished from
the physical displacement vector (u! u? u®). The reason for introducing

both tensorial and physical components of the displacement vector is that
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the strain-displacement relations are natural in the tensor form, whereas
the shell-assumption of u? independent of y? while u! and u? vary linearly
with y3 is expressed in terms of physical displacements. The entire
problem will be cast ultimately in terms of physical displacements.

The relation between physical and tensorial displacements is well-

known:

wl = giva; = g, Vall (1

not summed on i
It is to be noted that, in view of the orthogonality of the coordinate
system, there is no need to distinguish between contravariant and covariant

forms of the physical displacements ul,

JADD TR 59-22 . 667
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3. STRESS-STRAIN AND STRAIN-DISPLACEMENT RELATIONS

The covariant form of the strain-displacement law for any coordinate
system, within linear theory, is given simply as

no= o3 (6 +E ) . (2)

wherein commas denote covariant derivatives and the §i are merely the
covariant *components of the displacement tensor. The M5 are the
covariant, linear strain components.

The stress-strain law for an isotropic material in general curvilinear

coordinates, including thermal stress effects, is given by

™ . 1:" (aik all 4 T VZV ad akl) Nyl ~ ——lfzt (T - Tg) all (3)

wherein ‘Ti‘i is the contravariant form of the stress tensor, ¢ is Young's
Modulus, v is Poisson's Ratio, a is the linear coefficient of thermal
expansion and (T-T ) is temperature relative to the temperature To
associated with the unstressed state. Repeated indices imply summation

throughout unless otherwise specified.

WADD TR 59-22 668




4, SHELL ASSUMPTIONS

At this point, ‘the shell au.umptions are introduced. These may be
summarized as follows:

@ 7120 (4)
i.e., the normal stress (normal to the middle surface) is small of higher
order relative to other stress components.

(B = ul L)yl (v )

wt = ud ) (0 yR) 4y udy (v yE) (5)

u3 = uzo) (Y l» Yz)

i.e., the in-plane displacements are assumed linear in y* while u? is
assumed independent of y’.
Finally
(c) the uz 1) u‘("z) are to be computed on the assumption that normals
to the middle-surface remain normal at the middle surface.
This process is clearly discussed by Novozhilov%, It is to be
emphasized that the foregoing three assurnptions, (a) (b) (c), together with
the use of constant mean values of € and v, are the only ones introduced
into the analysis until the difference method is introduced to permit numeri-

cal solution. No intermediate approximations, such as the common expansion

of contravariant metric elements in powers of y3 , are utilized.
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The assumption (4) of vanishing T”is utilized to eliminate n,, from
the stress-strain relation (3) . Hereafter, Latin indices i, j, k,1 ... will
range over l, 2, 3, while Greek indices a,f,y,6 ... will range over only
the middle-surface indices 1, 2. The elimination of n,, from the general
stress-strain law (3) gives the following shell stress-strain relations for

the stress components parallel to the middle surface:

€a anp(T-To)
1-v

0B _ e (aa6apv+ v aaﬁayﬁ)n
1+ -y Y6

(6)

This is the stress-sirain law, including thermal effects, which governs the
general shell-of-revolution problem.

Next is invoked the assumption (c) of normals at the middle surface
remaining normal for purposes of computing the \J(CI) . This is equivalent

to assuming that

n =0
a3 . a
L for purposes of computing the u(1
3
=0

The consequences of this condition are as follows:

_ 1
n(l3\ - 2 (ga’ 3 + §3, Q) (7)
y> =0 y>=0
Expanding the indicated covariant differentiation, this becomes:
E d k
0 4220, 25 -1 e
3 a k k
9y 9y a 3 3 a
- y; =0
- (8)
3, 9&, k :
= + -
8)’3 ay(l k
- a 3
-y -0
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where the bracketed expressions are the Christoffel symbols of the second
kind based on aj; and where the well-known symmetry of these symbols in
the lower indices has been utilized. It is easily ascertained for the present
metric that all Christoffel symbols with more than one index equal to 3

must vanish. Hence,

3¢ 9§, g
0 f—2, 2 _;
oy oy° a 3 s N
=0

Utilizing relations {i) and the fact that 3% = a,, =1, this may be expressed

in terms of the phye@icat displacements

] N O TPl o} P
9 may + 0 -WJ-*—’-F 2%“ . (10)

y's0
no sum on a )

Now the ralation between Christoffel symbols of the first and second kinds

ir given by
‘ ’ | ! = ail [j k.l] ' . (.lll
flenco . [ 3 - ‘kp E S.k] - ‘.‘Yﬂ [o 3"] ) {(13)

due to the vanishing of Christoffel symbols with more than one index equal -

to 3. Invoking once again the diagonal character of a.:, and the defining

ije

relationﬁ3 for the Christoffel symbols of the first kind;

.
. - Paj,  Ba;:
[1 J,k] = zl. (aalk + a-Jl( - ali](— ) (13)
. 8YJ N a)’l 9y )
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the relation (10) may be put into its final form:

a 3
8\1 = uQ = _]; aaa uu 3aasa - \,;E_d. 8ua (14)

no sum on a

a =12
This pair of equations serves to eliminate trom all further considerations

the quantities u&) in favor of the middle-surface deflections u and

a
(o)
gradients of uzo) . With this relation, the direct consequences of the

shell-assumptions are concluded.
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5. EXPRESSION OF STRAINS IN TERMS OF PHYSICAL DISPLACEMENTS

Equations (1) and (2), together with the well-known properties of the
Christoffel symbols, permit the expression of the strains Nap in terms of
physical displacements wl. These take the following form, for the case of
the metric tensor corresponding to Figure I:

. .
— \{'a"_ du + Na22 i aau S 1 3au

Ny = - uld
11 i1 ayl 2 ayz 2 8Y3

du2 us 9da
nzz = Naz + 22

ay? 2 9y’

(15)

n = 'Ja" au! o V.;.n-aa" + Na,, 0u?

12 2 9y? 4 ay* 2 oy!

These strain expressions may then be given in terms of middle-surface
values “:o) of displacements by simply substituting from (5) and (14) into
the general displacements u' of (15). The substitution, while routine, is

somewhat lengthy and need not be reproduced at this point.
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6. ENERGY FORMULATION

The energy formulation sought for the shell problem under both thermal
and mechanical loading may be develcped by extending to general curvilinear
coordinates the "free energy' considered by Hemp in Reference (). Hemp
proposes a thermodynamic explanation of this quantity, but it suffices to
consider the free energy as simply equal to the variational integral whose
Euler's equations provide the proper equilibrium 2quations of thermo-
elasticity as well as the proper boundary conditions. In this sense, the
free energy serves as the thermoelastic analog of the strain energy in
ordinary isothermal elasticity, and this is the context in which it will be
utilized in the present analysis.

Hemp's free energy, extended to general curvilinear coordinates yi,

takes the form:

r s
= (\Jd alta’ __‘__(alka']l+

F = y dy y v alJ akl)
(general) » 2(1+v)

.. N
1-2v T]1_] kl

(16)

€ea ik
- (T -T) a
T-zv J 2y

Under the shell assumptions (a), (b), (c) of the present analysis, the

expression for F may be re-derived with the following result:

F = F={|{Ja d® a2} ¢ (a“éa‘i’ﬂ__" a®PaY®y

shell y vy 2(1+v) l-v a}:}n

Yo

(17)

_ €a (T-Ty) ap
l - v 2 naﬁ
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This relation in conjunction with a work integral W forms the basis for
the shell analysis developed herein. The work integral for the shell, assum-
ing the mechanical loading to be due to a normal pressure distribution,

p(y!, y?), is given by
w iﬁ’ dyldyz J(y!,y*,0) p (¥ y?) ui(y! y?) (18)

where p is considered positive when directed inward; i.e., p is actually
the local value of (outer pressure minus inner pressure).

The combined problem of mechanical and thermal loading of a shell is
then stated in variational form: The solution distribution of deflections ui
is such that {F-W) is statignary , d.oe.,

6(F - W) = 0 ) (19)

However, the fact that linear .;heory is used throughout implie.s that super-
position of thermally and mechanically induced stresges is valid. Hence,
the thermal response resulting {rom the temp;rature term in F and the
mechanical response resulting from'\v may be calculated separately and
added. Care must be taken, however; to insure that ;he proper mean values
of ¢ and.v are used in the pressure problem if the pressure .loading is to

occur under high temperature conditions.
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7. ELIMINATION OF y! -DEPENDENCE BY FOURIER ANALYSIS

The thermoelastic response problem defined by relations (17), (18),
and (19) is of three-dimensional character in its present form. The purpose
of the present section is to reduce the problem to a series of two-dimensional
problems in which the y! -dependence is lacking. The following section will
describe the technique for reducing each of these two-dimensional problems
in turn to a one-dimensional problem by integration through the shell thick-
ness with consequent elimination of y3 -dependence.

The reduction to two dimensions is straightforward and is accomplished
by Fourier resolution of mechanical and thermal loading distributions as well
as of the corresponding response deformation distributions. Thus, the
independent variable y! is, for reasons of clarity, denoted by 0 and the

pressure load p{y!y?) is expressed as a cosine series in 0:

(s3]
p(y!, y?) = p(y?,0) = 2 m Ply? ) cos m@ (20)
m= .

The use of a cosine series is but a minor restriction since the origin of 0
may be chosen at will, and the radome loads to be expected will generally
exhibit symmetry about some meridian plane.

Similarly, the temperature loading may be expanded in a cosine series
with respect to @ where, due to the validity of superposition, the origin for
this 0 need not correspond to that of the @ used in the pressure expansion,

provided the responses are obtained separately and superimposed correctly.

a(T-T) = § m‘!’(y"',y3) cos mo (21)
m=

Thus,
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where the coefficient of expansion, a, which is in general temperature-
dependent, is included with (T-T_) to simplify the analysis. Corresponding
to loading expansions (20) and (21), not necessarily considered simultaneously,

the displacements ul are resolved into Fourier components as follows:

u! == mu® cos m@
(o) i
m=0
, [ )
= 2 ] ’
u(o) E mY® cos mo (22)
m=0

@
u:o) = E mu1 sin mo
m=z=1
1

= i, 2
where mY TmY (v¥)
Now, from equations (5) and (14), together with the fact that all

geometric properties are @-independent, it follows that u(‘l) depends

3
linearly upon uzo) and —g—%l- » both of which are given by sine series,
3
u
Similarly, u("l) is linear in u(?-o) and -a‘-T , both of which are given by
y

cosine series. Hence u? and u? are expressed as cosine series in ® while
u! is a sine series, which state of affairs corresponds to the even charac-
ter of the loading (thermal or mechanical) in 0.

An examination of strain expressions (15) in the light of the above
remark reveals that M and ., must be pure cosine series while Nz

must be a pure sine series.
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Now, from the diagonal character of the metric tensor a5 (hence, also

) which is merely the inverse of aij)' it may be easily seen that the free

of a*
energy expression (17) involves quadratic forms in the strains of only the

following types:
2 2 2
(M) () (n) (n nz2)

and that, moreover, these expressions are multiplied only by quantities
independent of y! (or O); Furthermore, the thermal loading term in F
involves only products of a(T-T,) and n,, or n,, together with @-independent
quantities (recalling the assumption of a constant mean value for ¢ and v).
Finally, the work integral W involves only products of pressure and u?,

together.with 0-independent factors. The result of all this is a complete

th

decoupling of distinct harmonics; i.e., associated with the m "' harmonic

of the loading (thermal or mechanical) there correspond only the mth

3

harmonics of u! u? u? and of uzo) uzo) and uzo) and of the strains and

stresses. This is a simple consequence of the fact that F and W involve
integration with respect to 8 over the interval (0, 2%) and the fact that the
sines and cosines form an orthogonal set with respect to a constant weighting

function over the interval (0, 2w). It follows from the relations

2w 2T
f sin’ mo do cos? m@ do =« m £0
0

(23)
2w

cos? mo do 2w m =0
0
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that the free-energy form ma- be reduced to a system of two-dimensional

problems independent of y! or @ by introducing the simple notation:

= 3
F(m) 2r C dy? dy () (24)
Likewise, the work form W reduces to a set of one-dimensional integrals;
- 2
Wien) = 27 ij AL ) (25)
with Ch=l: m=0
=3 : m >0 (26)

th integrand involves only the mtP harmonic of pressure,

wherein the m
temperature, and strain.

The problem corresponding to (19) for the mth harmonic is then

simply:

S (F " Wim) = O (27

The problem, originally three-dimensional, is thus effectively
reduced to a set of decoupled two-dimensional problems. In practice, it

will suffice to consider only zeroth

and first-order harmonics (m =0, 1)
unless the loading exhibits unusually severe 0-dependence associated with

some sort of load or temperature concentration.
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8. REDUCTION TO ONE-DIMENSIONAL PROBLEM BY INT EGRATION

THROUGH SHELL THICKN ESS

The work forms W(m) of expression (25) -are already one-dimensional,
and it remains to put the free-energy harmonics F(m) of expression (24)
into similar form. This is accomplished simply by integrating with respect
to y? through the shell thickness from -h/2 to +h/2. The int egration oper-
ation involves no essential difficulty for the portions of F(rn) quadratic in
the strains, since all y’ -dependence is completely defined. The tempera-
ture contribution to F(m) is treated simply by defining several required
weighted integrals of a(T-T,) through the shell thickness. In view of the
fact that the distribution of a(T-T,) is input data for the thermal stress
problem, any such weighted integrals will be known as required. It should
be noted again that no approximations or expansions in powers of y3 are
necessary at thisstage of the reduction in view of the fact that the problem
is eventually to be solved numerically. The presence of variable coefficients
of logarithmic character, for example, causes no difficulty in the numerical
solution.

The type of result which is to be expected from this operation may
be indicated as follows: Equation (14) gives u(al) as a linear combination
of u?o) and -g-szg) involving no y? -dependence. Thus, making use of the

Fourier resolution of the preceding section:

mi% T ity )+ v ud 0
(28)
w T mig )
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Now, from the free-energy expression (17) and its two-dimensional
Fourier resolution (24), it can be seen that the only y? -dependence in

F(m) enters through terms of the following types:

2
I (a't ny,) J (a% ny, )? J (@ nyy a*2 ny;)
J all a?? (n),)? (29)
a(T-Ty) Ja'l 1y, and a(T-Tp) J a¥2 n,,

Furthermore, examination of strain expressions (15) shows that

8(Nay ), 3 (Nay )

u

gu!
al' n,, = Na1l — + NPY

ay 9 y? dy3
gu’ 3 9 (Na
# n,; = NazZz (ay‘ + u ——————(aysll ’) (30)

Nag2 1 1 gu’
Nall 22 Ny ® a 2a ,\[a_“ 8uz _ud Na,, +NaT u
oy dy? ay?

Moreover, J is given simply by Na,, a,,

Therefore the terms (29) which are quadratic in the strains are all of

the form
~ T p— . T
1
Nall multiplied by polynomials in y3 .
1 b ' (31)
N a2z of up to 4th order
N all 22

- - L -

The temperature terms of (29) involve only the temperature, or a(T-Tg)

multiplied by polynomials in y} of second order or lower,
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Now terms of the types occurring in (31) are all easily integrated
\’avith respect to y3, resulting in nothing more formidable than logarithms
whose arguments may depend upon y2. The temperature terms may be
handled completely by defining the following three weighted averages of

the general m!" harmonic of a(T-T,) (recalling expression (21) ).

~
LI h mT(d(Y‘)
P T e sl A gl (32)
. (y%)? )
| | th T (2)

‘These weighted averages are all known in terms of prescribed data
for the thermal stress problem. Thus the problem (27) for the mth
harmonic of the displacement distribution and, correspondingly, of the
stress distribution, is reduced to a one-dimensional problem with v,
the middle-surface arclength along the meridian, serving in the role of
i;mdependent variable. A.s a final parenth'etical remark, it may be noted

that the logarithmic terms resulting from the y3 -integration will all be

,of the form

r -
- h/2
. Ra
Ln‘ h/Z f (33)
L.. 1+ R,

a=zlor2
and hence are well-behaved as long as the local semi-thickness h is
smaller than the smaller of the two local principal radii of

curvature, R, , R;.

.
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9., BOUNDARY CONDITIONS

Only one set of conditions remains in order to complete the problem
statement, and this is the prescription of boundary conditions at the for-
ward and after edges of the radome shell, Within the framework of the
energy method it is possible to prescribe in a routine manner very’general
boundary.conditions including the presence, if necessary, of an elastic
central boom.

Considering first the base of the radome (y?=1) the shell is assumed
simply supported but with a distributed moment spring of spring constant
k3 inch-pounds ;;er radian per inch of circumference (see Figure 3(a) ).
The presence of the spring ky corresponds to partial fixity and may be
varied from zero, corresponding to simple support, to infinity (see the
end of the present section) corresponding to the fully-clamped condition.

The base boundary conditions are thus specified 28 follows:

at v =1 w = _u = _u =0 ( 34)

And, to the free-energy component F add the base-spring energy:

x
9 u?
3 k m
Fr(n) = "E," R, cosg | — dy'] cos?(y'm)
0 ay*

2___1

Y
2
kl amu3
2w CmT Ry cosp By?
Y =1

(35)
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Conditions (34) are specified in the conventional manner, whereas the
edge moment condition, instead of requiring the usual development of an
expression for macroscopic or resultant moment in terms of displacements,
appears in the form of a ;imple addition to the free energy. These
conditions complete the base boundary specification.

The nose boundary conditions are inserted in a manner similar to
that illustrated by expressions (35;, there being in general no nose con-
straint equivalent to the fixed conditions (34). Figures3(b), (c), (d), and
(e) illustrate the equivalent springs for the nose boundary conditions.
Figure 3(b), with associated spring k;, represents the resistance of a
central boom (and nose attachment to the boom) against axial stretching.

The mean axial displacement at the middle surface for the nose is

given by
2w
Z-—:- (u® cosp + u? sing) dy? =
0
Y =0
¥ =at
(36)
oF cosP+ _udsinp

y'=0
Y =at
Thus the energy addition appropriate to axial displacement of the

nose is: Add nothing to Fp, for m > 0, and to F, add,

—lZ(L--(c,uz cosP + qu’ sinp)* (37)
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If there is no axial restraint from a central boom, k; =0, while nonzero

k, -values give various degrees of axial stiffness. Similarly, the mean

value of nose transverse displacement, which is resisted by elastic bend-
ing of the central boom, if such a boom is present, is given by

2%
%‘; ((u’- sinB- u? cosp) cos y! - ul sin yl) dy!
0]

(38)
% (luz sinp- u? cosp - ‘u) '

And the corresponding energy addition is (see Figure 3(c) )'zero for

m#£ 1 and
2
EZL 31- [luz sinp - u? cosp - luﬂ for m.=1  (39)
y'=0
ye = at

where k, is the spring constant for the boom in transverse deflection. If

the boom is absent, k; = 0, while nonzero k, -values correspond to varying

degrees of boom flexural stiffness.
The central boom , if present, also resists a mean value of shell

transverse slope at the nose (Figure 3(d) ). This sl ope is given by
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a = - .a__ i 2 o5 3 1
a = cosp 0y \Z yu” 8inf - ju’ cosp - ,u (40)

the computation of which is facilitated by the fact (Figure 1) that

8 = . 1 The energy addition corresponding to this is simply
oy . Rz
k
—24—’ (a)? for m=1 and zero for m # 1 (41)

Again, in the absence of the boom, k4 = 0,

Finally, Figure 3(e) represents the noseequivalent of the base-edge
clamping. The distributed spring kg provides the equivalent of the degree
of clamping of the nose edge to the boom or to any closing member even if
the boom is absent. For purposes of computing the contribution to F from
this equivalent spring distribution, it is necessary to have an expression
for the y! -component, z!, of physical rotation. This is given by the

following relation:

1 au’ u?
Z = 3 2 + —"—'R (42)
Yy 2
y’ =0 y, =0

The contribution to F due to distributed nose spring kg is given by the
integrated square of the difference between this local rotation and the

angle (-acos y!) corresponding to mean rotation of the nose structure.

2n ‘ ; 2
2
_£§. R, cosp auz + L 43 cosy dy‘ (43)
2 9y R,
0 Y’ =0
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This is easily integrated to give

—~
kg = sl2 c dmu® mu? 2e(a a.\13+1u,2 4 on
—— R, cos w + +2n(YP—t+t—] + wa
Z m ayz Rz 8yz I\’z
ms=
o

e
-—

N
&

where a is given by (40), and terms in (44) containing a contribute only
to F(x) whereas the series expression contributes to ¥ for all m =0,L2,...
In the event that the nose edge is free or is simply supported at the
connection to a central boom, then kg is simply set equal to zero, whereas
a fully-clamped nose condition is achieved by letting kg become indefinitely
large.
The approach to infinity of any of the aforementioned springe ir
order to simulate fully fixed conditions may be handled withir & nuraerical
difference scheme by scaling certain of the mesh-pcint values of displace-
ment or differences thereof in such a way that numerical data remains
bounded. This is numerically equivalent to inserting the constraints direct-
ly, as in equation (34) for the base edge displacement. If this approach is
considered undesirable due to other features of the numerical solution tech-
nique, then the fully fixed condition may be placed in the direct form of
equation (34). In other words, in place of letting k; approach infinity and
including in the energy expression the contribution (35) with the ~onsequent
necessity for scaling, the condition of full fixity is equaliy well inserted

by setting
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=0 (45)

and imposing the corresponding constraint on the numerical difference

problem.
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10. FINITE-DIFFERENCE SOLUTION TECHNIQUE

The complete shell analysis is now formulated as a series of uncoupled

variational problems of the form (27) in which the energy expressions I'Zm)

»

and W) consist of one-dimensional integrals over the shell meridian
plus possible boundary-condition energy additions to F(pywhich are expressed)
as qu'adratic combinations of edge displacements and derivatives thereof.
Starting from this point, a variety of solution techniques is available. .
One might use the Rayleigh-Ritz method of expanding unknown deflections
in a series of known, fixed-boundary-condition satisfying functions and
perform the variational operation directly by minimization with respect
to the displacement expansion coefficients.

The existence of edge effects which exhibit strong gradients in the
edge regions militates against this method as does the inaccuracy inherent
in utilizing the method to obtain stresses which involve derivatives of the
displacement expansion functions., Still another disadvantage of the
Rayleigh-Ritz technique lies in the tremendous number of integrations
which must be performed to gene_ate the matrix of the numerical problem.
Alternatively, one may perform the ;/ariational operation analytically to
obtain systems of three ordinary differential equations for each harmonic
(;ach value of m). These (Euler) equations may then be solved by finite
difference techniques.

There are several disadvantages associated with this technique. First,

the Euler equationr must be found analytically, as must the natural boundary
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conditions associated with free or spring-restrained edges. Then both the
equations and the boundary conditions must be placed in difference form,
an operdtion which leaves a great deal to personal judgement. Finally,

wh :a this i3 complete, there is no assurance that the matrix of the system
of equations will be symmetric and positive definite, and these character-
is.ics are helpful in guaranteeing the convergence of iterative solution
techniques"’. The large-scale character expected for the system of equa-
tions indicates that iterative technigres will be needed for refinement of
solutions if not for actual solution its-=lf,

The approach follow2d here is, in a sense, a combination of the above
two techniqu:s. The continuous range (al, ) of y* is replaced by a dis-
tribution of discrete points and the values of the displacement components
m%o) Z‘I‘on) muzo) at thes: points are considered as degrees of freedom for
the variationai problem. The point spacing need not be uniform and, in
fact, in >rder to describe adequately the edge-effect or '""boundary-layer"
2ffect, this spacing should be considerably smaller in the base and nose
edge regions, changing to a larger value for the major internal portion
of the range. The decisive point here, however, is the fact that the
diff>rence approximation is introduced directly into the energy integrals
iwhich, in turn, become sums) and the boundary energies, thereby converting
the total energy expression (F(‘m) - W(m) ) into the sum of a quadratic form

and a lineaT form in the point values of the displacements u(1 . This

o)

serves io make the differencing more routine and less a matter of choice,

but more important, it guarantees the symmetry and positive definiteness
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of the matrix of the equation system, since the matrix arises from the
positive definite quadratic term in the free energy. Finite-difference
approximation of this term should not alter its positive definite character,
and will result in a symmetric system matrix, The finite difference form
of the Euler equations or, what is equivalent, the equilibrium equations

is then given simply by 2quating to zero the derivative of the iotal energy
form with respect .0 each of the degrees of freedom. Thus the matrix of
the quadratic erergy form (multiplied by 2) becomes the matrix of the
difference eguations, 1ad the vector whose inner product with the unknown
displacemen. gives the linear form in the total energy, becomes the forcing
vector ‘cr the systemm. Hence the above-mentioned differ :ntiation wich
respect to the point-values of the deflections need not be carried out,
since the results are known beforehand, and the matrix of the quadratic
energy form together with the vector of the linear form serves to describe
compleiely the system of nonhomogeneous linear equations which con-
stitutes the difference form of the equilibrium problem. The finite-

difference equivalents of all boundary conditions are automatically

incorporated into the matrix of the quadratic form, and no further attention
to boundary condition specification is required. This statement holds true
whether the boundary conditions correspond to free-edge, partially fixed,
or fully clamped situations, although in the latter case a numerical scaling
transformation will be necessary if the full fixity constraint is not incor-

porated as an absolute constraint.

e AEMA R ARAR.
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In order to illustrate in somewhat greater detail the type of difference
replacement which is introduced into the energy integral, the following
exarn.ples of typical terms should serve as models. Typical of the quad-
ratic first derivative terms which appear in the energy expression is the

following:

!
2
f (—‘11”— dx (46)
dx
ak

wherein w is the generic displacement variable. If the end-point (af) is
numbered n = C and the point £ by n = N, this term would be replaced by

the difference approximation.

N K
W. - W H
o1
E AL _Z_.L__ (47)
n= n, n-1

where wp, is the value of w at point n, and A is the spacing between

n, n-1

points n and n-1. Form (47) holds regardless of nonuniformities in point-

spacing, i.e,, rcgardless of relative magnitudes of the spaces A, ,_|.
’

A term of the form

1
f pw dx * (48)
al

which typified the linear forms contributing to the forcing of the system

would be replaced by

N
&+
Z P, W, (An,n-l : An, n+l> (49)
n=
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where AO. -1 and AN, N+l are both to be taken equal to zero. An examina-
tion of the difference forms resulting from differentiation of these expres-
sions with respect to a point value w_ shows that proper difference fo. mulas
for the second derivative of w, even for the case of an irregular mesh,
result automatically. (The second derivative of w is the proper differen-
tial form associated with the variational integral (47) ).

For terms such as the following:

(e~

which typifies the highest order contributions to free energy, the differ-

ence approximation is:

N-1

E (Aan-l+Anln+l) - 2 1
2 A °

n=1 n, n-1 An, n+l An, n-1 An, n+l

(51)
2

+
An, n-1 “h+

n, n+l Ya-1 n+l) Wn

n,n-

Once again, an examination of the difference form resulting from
differentiation with respect to some internal w,, shows that the result is
precisely the centered difference form (for a general irregular mesh)
corresponding to the fourth derivative, which is the proper Euler expres-
sion corresponding to the integral (50). Furthermore, it is not difficult to

establish the fact that differentiation with respect to end point values of
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W, in (47), and both end-point and next interior noint values in (48) leads
tqo backward difference formulae, for the right end of the range (and for-
ward difference formulae foi the left end of the range) corresponding to
the natural bouncary conditions associated with the variational expressions.

Thus the replacement of the inte gral expression for (F(m) - W(m) )
by difference forms such as the preceding examples (with similar expressiond
for mixed types) and addition of difference equivalents of the bdundary spring
terms serves to plcce the entire problem in proper difference form and,
at the same time, insure the symmetry and positive definiteness of the
formulation. Solution for the response deformations then consists in
solving the cystems (one system for each harmonic, .n, considcred) of equa-
tions for the point values of the displacements mu(io) . The systems will,
of course, involve a large number of simultaneous equations, but the special
character of the matrix which can be achieved by proper ordering of the
unknowns permits efficient solutior. by any one of several well-established
numerical techniques.

The solution of the system of equations will be expressed in terms of
the displacement components at the middle surface at the discrete number of
points chosen for the difference approximation. These middle-surface valuesT
together with the relations for the slopes n(oi) , in terms of these middle-
surface displacements and gradients thereof, permit calculation of the

displacement through the thickness of the shell at the specified mesh points.
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Likewise, availability of .he displacements permits calculation of the
strains and stresses, with required gradients replaced by the appropriaie
difference approximations, Strains and stresses may be obtained by means
of higher order difference formulae in order to minimize 1088 in accuracy

due to the difference approximation of gradienis.
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11. CONCLUSIONS

The objective of the development reported in the foregoing sections is
the construction of a digital comnputer program capable of generating stress
and deflection solutions to the thermally and mechanically loaded axi-
symmetrical radome. The technique developed stems from a general
formulation of the appropriate energy expressions in terms of deflection
distributions and proceeds to a difference formulation of the numerical
problem by way of a direct variational method. The energy formulation is
sufficiently powerful to permit inclusion of effects due to an elastic central
boom with no essential additional complexity. Varying degrees of edge
restraint are also capable of inclusion without difficulty. Both iterative and
exact inversion techniques have been developed for solving the resulting large
scale algebraic problem in a matter of a few minutes on a high-speed digital
computer, and the problem is organized into a positive-definite, symmetric
form which insures convergence of iterative methods.

The programming of the analysis has been carried out for the cone and
ogive. The cone program has been written for the closed nose condition as
well as the truncated cone with general boundary condition capable of including
a central boom. The ogive is treated for the closed nose condition. Details
of these programs are given in a subsequent section.

An Appendix B is included with the present report to indicate an gpproach
based on physical considerations, to the apex boundary conditions on non-

truncated shells of revolution. As noted in the appendix, the physical apex
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boundary conditions should be augmented with a development of mathematically
proper apex conditions.

In connection with the problem of boundary conditions, however, several
important points should be kept in mind. First, some of the physical apex
boundary conditions, or combinations thereof, developed in Appendix B prove
to be essential for boundedness of stresses, rotations, and deflcctions off the
shell middle surface, as well as of the free-energy integral itself. Thus,
these conditions must, u.‘nder all circumstances, be enforced at the apex.
Second, the use of direct energy methods such as is done in the present
analysis, is a powerful tool in the handling of boundary conditions. Apart from
direct constraints, such as fixed edges, the inclusion of the free energy of
potential energies due to all sources guarantees the satisfaction of all natural
boundary conditions. Thus, the incorporation of all physical apex conditions,
as derived in Appendix B, which relate to the direct physical connection of
- the shell with itself at the apex, should give automatically all the apex bcundary
conditions, those not forced explicitly being implied by the variational procedurse

and hence appearing naturally.
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APPENDIX A - LIST OF SYMBOLS

fraction of meridian at which truncation occurs

a.., all metric tensor

1)
Cm coefficient £1 form =0, =1/2 for m >0
h shell thickness
k spring constants

: 1 meridian length, extended to apex
p pressure
u' uyl physical deformation compcnents
w generic symbol for ulu?u?
) ylyv?yd coordinates
2l z2 23 phyrical rotation components
F {free energy
J Jacobian or volume element
R,, R; principal radii cf curvature
T temperature
w virtual work
a coefficient of linear expansion
a mean rotation at shell nose
B local meridian-curve slope
€ Young's modulus
v Poisson's ratio
) first variation
%) longitude angle =yl
S cone semi-angle
Tij stress tensor
ni_j strain tensor
o1 physical components of stress
An, n+l finite difference point spacing between points n and n+l
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APPENDIX B - PHYSICAL BOUNDARY CONDITIONS AT THE APEX

OF A NONTRUNCATED SHELL OF REVOLUTION

Following is a discussion of the physical boundary conditicns appro-
priate to the apex of a nontruncated shell of revolution, In a sense, the uce
of the term ''boundary'' is incorrect, since the closure of the shell at the
apex implies that the apex is no longer a boundary of the shell but is an
internal point. However, with respect to the coordinate system utilized
(Figures 1 and 2), the apex constitutes the lower limit of the variable y#¢
and hence a boundary of the y1 , y"' domain. The term 'physical' ic used
advisedly, since the conditions derived herein are devised on phyrical
grounds. It is well-known in plate and shell theory that the physical tound-
ary conditions are not always the mathematically appropriate boundary con-
ditions. The question of mathematically appropriate boundary conditions at
a free edge (not the apex of a closed shell) are resolved automatically by the
use of a variational treatment; i. e., the natural boundary conditions of the
variational formulation are the mathematically appropriate ones and there
need be no further concern about edge physical conditions. At the apex of
a closed shell, however, the natural boundary conditions cannot be expected
to provide all the boundary conditions unless the apex is punctured, and
this puncturing process admits solutions which should not be present for
the clesed shell.

The following development of physical conditions appropriate to the

apex of a closed shell is, .herefore, only part of the story. The degree to
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which these conditions coincide with the mathematically appropriate ones
will require further investigation.

The types of shell shapes of practical interest fall into two categories;
those having a physical singularity at the apex, such as cones and ogives,
and those having no such physical singularity, such as ellipsoids and hemis-
pheres. Within the coordinate scheme used herein, howvever, it must be
understood that a singularity is present no matter what the shape of the shell.
This is evidenced by the singular behavior of the metric element a!! due to
the presence in this element of the factor 1/cos? B, for the blunt-nosed
shell and due to the fact that R, —3»0 for the pointed nose shape. Now this
fact leads to the preliminary conclusion that certain terms in the free-energy
expression contain nonintegrable singularities. This, of course, is an im-
possibility since the free energy must be bounded. It will turn out that the
physical boundary conditions derived herein are precisely the conditions
necessary to keep F bounded. It should be emphasized that analysis of the
apex region is essentially a three-dimensional problem in which the shell
assumptions are invalid. Nevertheless, the apex conditions derived herein
are conditions which should be approached in some sense by the shell
solution as the apex 1s approached. It is in this contextthat the present
appendix is to be interpreted.

The physical boundary conditions at the apex may be stated as follows:
As the apex is approached, y?—» 0, and the entire range (0, 2m) of y’

approaches a single common point; i.e., as y* —90, all values of y!
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between 0 and 27 are physically coalescing to a common point. It follows
directly from this fact that, as y? —»0, both the physical displacement
vector u and the physical rotation vector, which will be defined as z (the
rotation tensor will be denoted by Li , and its physical components, by zi),
become independent of y1 or equivalently, of 8. This, however, is pre-
cisely equivalent to the statement, following Sokolnikoff3, that 4 and z
become parallel vector fields with respect to latitude circles as y2—» 0.
This may be stated mathematically by prescribing the condition that the
intrinsic or absolute derivatives of z and U with respect to 8 must vanish

as y2 —»0. The statement then becomes:

; j
as y*—>0 R A
»J de
9 (B-1)
1 J
L,j .EY__ —_—> 0
L de
J
but dy” _ 0 i= 2,3
de
(B-2)
=1 i=1
Thus (B-1) becomes:
2 .
i
as y> —0 §’l —>0
< (B=-3)
L‘l —>0
b ’
Expanding the first of these (the second follows by analogy)
agh i ,
as yz ‘-——)O , 5 : + gJ —30
Y .
L -
or ' (B-4)
. i )
_a.Sl_+ a [lj,k] §J____,0
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Expanding still further, this becomes:

1 11
as y'—30 1 + 2 <_ailzL gz

8a 3
;l §> —> 0
oy

2
9t _ a* /9311 1
By! 5 \ oy? £)—0 (B-5)

ay‘

g

1 9a,, 1
r s\ §) 0
dy 2 dy
Replacing the tensor quantities §i by the physical displacements u!

by means of (1), the above relations become;

gu! all f9ay, ba,,
2 > Nall N Y 13 3
as y 0 a ayl + > ayz u a + 8y3 uw)—>0

2 22
Na%? Zul _ ::1Z 8831; ,,/au u!> —3>0 (B-6)
Y b

8113 1 aau m
- - a ul }
Byl 2 ( 3y3 0

Now, in view of the fact, embodied in equations (14), that the dis-

placement components u'

are calculated in a manner implying locally rigid
rotation through the shell thickness, it suffices to satisfy relations (B-6)

on the middle surface y3 = J. Thus, equations (B-6), specialized to the

middle surface, y’> = 0, constitute three of the apex physical boundary con-

ditions. The other three conditions follow from the second of equations (B-3),

by direct analogy:

—
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1 n /sa fa '
d‘iﬂazl+a<"z=~/3¢—=+"z>——yo

oy 2 ay? oy*
Y =0
2 22

NP 9z"  a 9a,, Ny il 0

ay' 2 %Y
| y 3

0
s
9z l da,, 1

y’' =0

(B-7)

Equations (B-T7) tak e on a greater significance when the actual expres-

sions for the rotation components z! are known in terms of the u

These relations are obtained as follows

3,

1 8§3

o3

Zz_agl_ = - 3(\11'\/_3.11)
L 73

a(u“/Z;)

ay’ )

‘)(-

i

13 3 Z)uz a( Na;, ul
gl ::—J—(——-z--__l> (’\I—Z—Z— - ( :’J.;zu)>

And, since the relation between the physical and tensor components of z is

N v

11

not summed on i

(B-9)
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it follows that:

3
ou
Zl = \[:27 2 - i!- (u dazz )
oy oy
— 3
g2 = Nal [ 8 (ulNa, ) _ B8u (B-10)
ay’ 3y
2} = NGl a2 <'\/azz 8ul a(ul :an )
0 oy

Now, from equation (14)

ou’ ou” 1 da

+ Nagq - = Na™TF ot _es =0 (B-11)
ay¢ ay’ 2 3
Yy Yy oy
y’= 0
no sum on a
or
3
8\; +—§-; u Vaaa)' Na™® uu_a_aﬂ_ =0 (B-12)
y'=0
Hence
3
0 da ou
NS (ua ‘aau> = T ut (;a - — (B-13)
9y oy ay®
3

y =0 Y=0

Specializing the rotations of (B-10) to the middle surface, the y3
deflection-derivatives which occur in these expressions may be replaced
using (B-13) to give the final relations for the physical rotation components

on the middle surface.
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3 —
z! = 2 \[?Z—_(auz -'uz ________8("/22 )>

oy oy
3
y =0 y3=0
i 9 (Nay ) pu’
z? =) 2 at! (! 3 - 1 (B-14)
9y 9y
Y'=0 . y' =0
auz b
23 - "’a. !I( 1) - NN .\/azz — (0! ’\/—a_;;)
oy oy

3
Yy =0 y3:0

Now, the first set (B-6) of boundary conditions has an alternative interpre-

dul _ 1

tation: If equation (14) for u is examined, it is seen that this
8y3 (l)
quantity appears to diverge as y? —3 0. For rewriting (14) in the form:
T 9 Nay; 8!.13
(1) 9y ay!

the factor Nall implies an infinity as y? —3»0. However the third of
boundary relations (B-6) is precisely the expression needed to keep uzl)
bounded at the apex. Without going into the details, it may be stated that

the first two boundary relations (B-6) are precisely the requirements needed

for boundedness of the physical stresses at the apex and of the free-energy

expression as well. The physical stresses U 'J can be shown to be related

NADD TR 59-72 705




to the tensor stresses T1iJ by the expressionssz

ij _ ij
TV = V';iiajj T (B-16)

in the present case.
(no sum on i or j)

The 8ix gencral apex boundary conditions (B-6) and B-7) are next
examined for the individual harmonics (values of m) under the Fourier
resolution of Section VII. Considering first the axisymmetric harmonic,
m = 0, it is seen that

ul 2 0

B-17
YR (B-17)

.8 )rl
throughout the shell,

In consequence of these relations, it follows that

zZ

i
o

(B-18)

m
o

z3

throughout the shell,
Now the second and third of apex conditions (B-6) vanish identically as does
the first of apex conditions (B-7). Thus, for the axisymmetric (zeroth)

harmonic, the apex conditions reduce to two relations:

as yz —>»0
all /8311 2 'J..__Z_z_. aau 3 T
- u a + -
2 \ayl o ayl oY 0
y’ =0
3 =
" 5 N (B-19)
2 ()zl _') 0
9y
y’=0
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The second relation of (B-19) implies that as yz —>»0

oZ —>» 0 (B-20)
3
y =0
B'Jau
for both pointed and blunt-nosed shapes since _— is nonzero at the
ay
apex in both cases. The relation (B-20), in turn, implies as Yy —>» 0
9 u? o (~Nazp )
o 2 2
_ u $ 0 (B-21)

y’=0

Now the two apex conditions may be expanded to give:

as y*—90
8 u? ouz
e+ —> 0 (B-22)
dy* R,
N S ou"' o (Ry cosp) - ou3 cosB| —>» 0
R, cosp ay?
y*= 0
But 8 (R, cosp) is equal to the sine of the semi-angle B
ay*
2
Y —»0

at the apex.
Therefore, the second of relations (B-22) may be expressed as follows:
as yz —» 0

1
R, cos $

ouz sinf - 0“3 cos ) —>0 (B-23)
y’=0
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which simply states that the radial displacement at the apex is zero. The
first of relat’ons (B-22) states that the slope-change must vanish at the
apex. In other words, the apex angle must not change under deformation,
and the apex material must not open up.

Next, the implications of (B-6) and(B-7) for the first harmonic

{m =1) are considered. Relations (B-6), give the result:

as yz_...)O
9Na aNa
A1l lul -)-1uz —-———-2— + 1u3 1 —3> 0
2 9 3
ay y
- y3= 0
2 9 Na;, 1
- ju -—-—a—y-z— 1 v —>» 0 (B-24)
y’= 0
3 dNa,, 1
- - ay3 1y —» 0
y'= 0
Now
0 Vau _ .
— = sin B
9y
y'= 0
and (B-25)
885;11 = - cosp
Y
y’ = 0
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So that relations (B-24) may be rewritten:

as y* —3 0
-t yu' + yu? sinp - yudcosp| —» 0
R, cosp
y'= 0
v+ jul sing —>» 0 (B-26)

y’= 0

0" - ju cosf | —0
y'= 0
But any one of these three relations is derivable from the other two, so
that only two are independent,
Following from (B-7}, (B-10), and (22), similar relations must hold for
the lzi:
as y* — 0
_._.1_._.[- y2' 4,2 sinp- ;2° cosp|l—3 0
R; cos g

y'= 0

{IZZ - lzl Sln}j —) o (B_27)

z2 + 32 cospg | — 0

|
L
lu

(o]
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and again only two of the three relations are independent.
An examination of expressions (B-14) for the z at y3 = 0 indicates

that ,z’ and ,z’ become indeterminate as y? —>» 0. For

9 ,u’ u?
12t ] = 2 (— + J——z—)
ay* R
Ya- 0 y’=0
Sl 2 1 3
12 = ———— (- u! cosp + u’) (B-28)
R, cosp
Y3= 0 y’: 0
8111.1
123 = ! (-luz -,u sinp) -
Ry cosp 9y’
3
Yy =0 y3=0

However, some thought on this matter indicat es that the numerators and
denominators of the indeterminate forms must proceed to zero at the same
rate, as y? —3 0, so that these forms are in general finite, nonzero quanti-
ties, and two of expressions (B-26) and two of expressions (B-27) serve
as the apex boundary conditions for m =1.

For m > 1the consequences of (B-6) and (B-7) are as follows:

as y2 — 0

1 1 2
——— (m ju! + u
R; cosp

sinp - ,u? cosg)| —30
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(B-29)
with analogous expressions holding for physical rotations mzi.
Now if the second and third relations of (B-29) are substituted into

the first, and the same operation is performed on the analogous zi-equations,

the following results are obtained:

3 1 1 1

m u - (=) U — 0

e y’: 0

~ (B-30)
m z! -(r%) m? | —¢

=3 y"zo

Hence, as yz..-_) 0
mu'!_—)o and 2} 5 0 (B-31)
y’ =0 y'=0

But then it must follow from the second and third relations of each of the

m“l conditions and the mzi conditions that, as y? —>0

| —y 0 i=12 3
y'=0
(B-32)
mzi —» 0 i=1,2,3
y' =0
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The apex physical conditions for harmonics higher than the first (for m >1)
are thus given by the condition that all middle surface displacements and
rotations approach zero as the apex is approached.

The expressions for the mzi may be obtained from (B-14)

3 2
,1 - > (amu . Y
m 2
2 R;
y3= 0 y3=0
z? = —i-— {- cos +m u? (B-33)
m R, cosp m m
3-
y3=0 Y -0

a_u!
z3 ———1-——- - m uz-mulsinp-__f_n.__
m R, cosf m ay?
3

=0 Y =0
Once again, the physical rotations _ z* and m? are indeterminate at the
apex.

The questions which must be answered by considerations of mathe-
matically proper boundary conditions are twofold. The first relates to the
indeterminacy in the rotations. The second relates to the number of apex
boundary conditions appropriate to each harmonic, It would appear that
there should be three apex boundary conditions on the zeroth harmonic and
four for all higher harmonics. The physical conditions lead formally to
two apex conditions on the zeroth harmonic, four on the first harmonic,
and six on higher harmonics. The six conditions, however, may overlap

due to indeterminacy in the rotation components,
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The determination of mathematically appropriate boundary conditions
at a singular point of a differential equation, such as the apex in the prerent
problem, is discussed formally by Friedman'. The mathematically proper
conditions are shown by Friedman to be the specification of the conjunct
(or bilinear concommitant) of the desired solution with the initials of a
linearly independent set of solutions of the homogeneous differential equa-
tions. Actual implementation of such a program forms a considerable
effort in itself and will not be attempted herein. The ultimate results of
such an investigation should, however, agree generally with the physical
apex conditions derived herein and should provide the additional informa-
tion needed to explain the counting and indeterminacy questions which the

~aysical derivation leaves unanswered,
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APPENDIX C

DYNAMIC PROBLEMS

In dynamic prroblems such as vibrations or transient
1nading (pressure or thermal) it is necessary to forimvlate a
“inetic energy integral for use in conjunction with the free-
energy expression (32) or with the simpler strain energy, V.
This kinetic energy expressicn is easily cast in the tensor
form apnropriate to curvilinear cocrdinates and takes the

folloring form (dots denoting time-~derivatives):

3
T = %—ﬁ((p Tdy'dy?dy?® ag; %
4]

-

= ;il\‘p J dy'dy2dy3 aind

J

T e

(C-1)

—

in the ecnne of orthopenal eoordinates only,

.
. . . . i .
vherein p is ~hell material density, £~ denotes tensor velceity,
o
and ul is phycical velocity. Under vibraticn at n sinecle

frequency w, the lLinetic enerey becomes

3
1
ROy I

N ‘/h . .
wz\gl p J dy'dy2dy3 2, 5 gled
2S00
(C-2)

1"/
¥ :
= % mzd\g p J dy'dv2dy? ulul
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The availability cf the foregeing energy and wark forms
nernits formulation of the various classes cf precblems Yo be
encountered in radome annlications. The underlyine onrincinie
in the formulation is Hamilton's or, vhat is equivalent in
the direct variational formulaticn, the Tarcrange equatiocns of
motion. In the presence of thermal effects, the nctential
energy is tc be replaced by the free energy. Fnllowine ia o
classificaticn of the v-riational »rincinies to be used fer
various cnses of interest,

a., Free vibration<c, withecut thermal effects:

rta
o{ (1-v) dat = 0 (C-3)
“tA

where & indicates first variation and intecraticn with recsrect
to time is performed between two arbitrary limits, t, ard t,.

b. Static pressure lcading, without therrmal effects:
b (V=W) = 0 (C-4)
where bw==§§dy'dy2 J(y',yy?,0) py b3 (C-5)
c. Thermal lcadingy,without pnressure lcading:

b (F) = 0 (C-6)
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d. Dynamic pressure loadine without thermal effects:
t
6Jr (T-V+W) dt = 0 (C-7)
to

where the variation oneration on W tales the form:

ot
(. at!li dy'dy? J(y',v2,0) ny dnd (C-8)

Jty 9

e, S-rmltaneous thermal and pressure ~tatic lendine:

& (F=W) = O (C-9)
where dW is as given in (38).
f« Dynamic thermal loading:

£
5J\(T-F)dt=0 (C-10)
tO

. Simultaneous thermal and pressure dynamic loading:

ty
5[ (T-F+W) dt = O (C-1)
t

o}

It should bc noted that case (g.) is actually all-inclusive,
provided the vanishing cf T in static cases and equivalence of
F and V in isothermal cases is recognized.

This concludes the classification of the various problems
which fall within the catégcry of linear analysis. "ithin this

limitation of linearity it is permissible to superimpose effects.
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For evample, the thermal 1nad’nc which makes its apnearance
in the free-energsy function, F, may he internreted simply as
a leading equivalent to s~ome nressuve dictribntion and with
scme nssocinted koundary corditicns, The response to this
thermal lradinz may be cnleulated csenarately and then super-
irposed upon the resnonse to other loadinzs such as pressure,
This linear analysis, with its consequent velidity of
superpositicn, breaks dr/n in certain cnases when one loading,
be it thermal or ctherwise, induces sienificant membrane
stresses in a shell, and a second loading then acts to deform
the shell in a locally normal direction. This set of circur-
ctances 1s handled by an initial-stress type of analysis and
is similar to situations arising in buckling problems and
centrifugal stiffening effects. Tts treatment requires the
introduction of nonlinear strain-displacement relations and

will not be handled herein.,
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Metric Tensor for General Shell of Revolution

2 2 322 3 12
ds® = dy® + (1-&’_) dy* +(R,-y’) cos?p dy
2

a.. =aij = 0: 1;‘_]

1)
- 3z 2 11
a;; = (Ry-y?) cos’p = 1/a
32
a2 = (1-—X—) = l/a.zz
R,

azzy = 1= 1/333

3
J:’f‘a.. =Nay az a3 = (Ry-y) (1'RL2')C°35

1J|
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a)

asz;

Metric Tensor for Cone

= @
A
=all -0 ifj
81 = 1/a%
= (y* sinkx-y® cosAf = 1/al
=1=1/a"
2 R 3
(y sink -y’ cos\)
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FIG.. 4 TYPICAL MESH SCHEME FOR TRUNCATED
CONICAL SHELL
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CHAPTER IV - PART B

TRUNCATION ERROR GROWTH IN EXPLICIT DIFFERENCE

SCHEMES FOR NUMERICAL SOLUTIONS

OF HEAT CONDUCTION EQUATIONS

By Frank Lane
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B. TRUNCATION ERROR GROWTH IN EXPLICIT DIFFERENCE

SCHEMES FOR NUMERICAL SOLUTION

OF HEAT CONDUCTION EQUATIONS

SUMMARY

An analysis is made of the possible growth or accumulation of trunca-
tion error for explicit difference numerical calculations of the time-dependeﬂw
temperature distribution in one-dimensional or slab configurations with
constant-property materials. Two limiting cases are studied: (a) the case
of homogeneous or zero initial temperature values and step heat input at
one wall with the other wall insulated, and (b) the case of arbitrary nonzero
initial temperature distribution and both walls insulated. For both cases,
it is proven that as long as stability criteria are satisfied, the truncation
error does not accumulate. Moreover, since any slab problem involving
constant-property materials with variable heat flow through one wall and
insulated opposite wall may be formulated as a superposition (of Duhamel
type) of these two problems (a) and (b), it is apparent that truncation error

will not accumulate in general providing stability criteria are satisfied,
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The interpretation of these results for variable-property materials
must be done somewhat intuitively, but it is expected that they hold in this
case as well, One may resort, for this purpose. to the argument which
replaces the variable material properties by local or instantaneous values
and invokes the constant-property result in the small. Proceeding in this

way, the result should hold in the large.
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TRUNCATION ERROR GROWTH IN EXPLICIT DIFFERENCE

SCHEMES FOR NUMERICAL SOLUTION

OF HEAT CONDUCTION EQUATIONS

1. INTRODUCTION

In the finite-difference computation of temperature distributions
through radome shells under the influence of aerodynamic heating, the
thinness of the shell together with the values of specific heat and conductivity
exhibited by ceramic materials dictate that the computations be performed
using a rather course space-mesh (dividing the shell thickness into about
six equal intervals) relative to shell thickness and a time step chosen
relative to the spacs mesh such that the stability criterion for error growth
is satisfied. The time step required for stability may be so small, due to
shell thinness, that for a typical trajectory of, say, ten minutes duration,
as many as 20,000 time-steps may be necessary to span the trajectory.
(Incidentally, this requires only three mintes of IBM 704 time.)} The
occurrence of nonlinear phenomena, such as radiative boundary conditions
depending on the fourth power of surface temperature, dictate that the ex-
plicit scheme be utilized rather than an implicit scheme which would permit
larger time steps. The advantage gained by the use of fewer time steps

would be more than offset by the nonlinear algebraic problems associated
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with the implicit scheme in the presence of nonlinear boundary data or
nonlinearities imposed by temperature-dependent specific heat and/or
conductivity.

The truncation error associated with the relatively coarse space
mesh, and the large number of time steps required to compute a trajec-
tory raise the question of the meaning of such a computation. Does the
accumulation of truncation error render meaningless such a calculation?
Following is an indication that in at least two limiting cases, the trunca-
tion error does not build up so as to render results useless after a large
number of time cycles. The two cases treated are (a) the case of constant
heat input at one wall with the other wall insulated and (b) the case of zero
heat input or output at both walls such as would be expected after radiative
equilibrium is reached during a flight trajectory calculation. In this dis-
cussion only truncation error is considered since the simple difference
scheme and the small number of space intervals utilized raise the truncation-
error question. Roundoff error, on the other hand, is small for the classical
explicit difference scheme and, for a time step which satisfies the stability
criterion, cannot be magnified by repeated time cycles. There still remains

the question of accumulated roundoff error, but this is not treated herein.

YADD TR 59.22 730




2, PROBLEM A

Consider first the case of a slab at zero initial temperature subjected
to a step heat input QH (t-o) at the outer wall and insulated at the inner wall.

The exact solution to this problem is the following:

2

2 ® n -nf®¥kt/ch
_Qft + £X ch -2ch (-1)"e nwx
T="C\®% " 7@ " 'k 2  “%%— (1
1

where h = wall thickness
¢ = (specific heat ) multiplied by density

k = conductivity

(The assumption of zero initial temperature is not restrictive since
case (b) will treat the problem of nonzero initial temperature with zero heat
flow at the two walls.)

Now as an indication of the degree to which the exponential terms in
the above series (1) decay with time, it should be noted that, in the difference

method, the ratio @ given by

B = k At
c Ax? (2)
where At is time step

Ax is space interval
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is of the order of 0.5. Thus the largest exponential term

e"l’z kt/cp?

may be estimated after N time stéps if the space mesh is %/I— times

the wall thickness.

_ w® NkAt ~ N L
-2 2 3 2 - —— 5
T kt/cn \ e M clan) . M z )
‘N time
steps

With a space mesh of Eltimes the thickness of the wall, M =6 and after

100 time steps

2 % x 100
- kt/op? T -13.7

~
[ x e = e (4)

100 time steps
M=6

This term, as is seen from (1), is to be compared with terms of the order
of unity. Thus after a time equivalent to 100 time steps in the difference
method, the exponential terms in the series are insignificant. Hence for
times greater than this, the difference in temperature distributions between

two times t; and t, (both greater than 100 At) is given very closely by

- T‘ : 8 (t; -¢) (5)
ch
t

This is obviously independent of x.
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Next the difference approximation is scrutinized. The difference

scheme appropriate to the present problem is, in terms of the sketch,

N A

. SS53

1
—4—w
S

0

n+l n n n
T, = T, +2B (T, -Ty)

n+l n n n n

o F Tm+ B (Tm-1+ Tm+l'2Tm) m=l, 2..... M-l

(6)

n+l n n n A x
TM =TM+ ZB(TM_l-TM) + 2 . Q
o
Tm =0 m=0,1 2...... M
k At
where B = ————3~ as noted earlier
c{A x)

This may be expressed in matrix form

41
T = AT + b (7
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o e e e

where A = (l-28) 2p O 0 . . 0 o0
6] (1-28) B 0 0 . . 0
0 B (L-29 B 0 . . 0
(8)
0 0 . . 0 B (L-2p) B
0 0 . R 0 0 2B (1-28)
I 4
and where b » T = To
n
Tl
T,
. (9)
0 .
2B AxQ n
( k ) TM
L - L -
and where T° = 3 7
(10)
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Now T' = AT°+b = b
T2 =2 AT +b = Ab+b =(A+DD (1)
T = AT  +b = (A? +A+I)D

etc.

Thus, the vector T™ at the nth time step is simply:

-1 -2
™ = (A" +AT 4 ... +A+I)D (12)

Likewise the difference vector between the temperatures at two times

n, At and n, At is given by

L 2

ST™ e (AT A L4 ATTT AT )b (13)

[ J
v

(n; - n;) terms

n, 1+l

T

Next, it is necessary to examine the eigenvalues M and eigen vectors of

the matrix A. This is best performed by considering the difference equation

B q™t 4 (1-2pn) g™+ pg™! = 0 (14)

m=1 2..... M-l

with initial and final conditions

(1-28-x) q°+ 234" =0

(15)
2 Mt vz M =0
Now let
A-2ph 'Zp A = -2 cos® (16)
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where it might turn out that 0 is imaginary, but this possibility is accepted

for the present. Then the general solution of (14) is

q™ = acosm@ + bsinmé (17)

Introducing (17) into initial and final conditions (15), there results:
-acosd + acos® +bsin® =0

(18)
- cc80 (a cos M@ + b.sin M@ ) + a cos (M-1) 8 + bsin (M-1)0 =0

From the first of (18) there results:

bz 0 (19)

since 0 = 0 leads to a result which will be included in those which follow
from the vanishing of b. The second of equations (18) then becomes

- cos® (cos MB) 4+ cos (M-1)9 =0 (20)
Or, expanding out the cos (M-1) 0 term,

- cos@ cos MO + cos MO coed + sin MO 8in@ = 0 (21)
so that sin MO 8in@ = 0 (22)

The proper eigen vectors are then given by

0, = — n=0 ,2,3....M (23)

where it can be shown that n > M leads to eigenvalue results which overlap

those of (23); e.g.

cos(MM+ ") x = cos (M- V) -& (24)

vl 2 3.,....
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Now the eigenvalues \, corresponding to the 8, of (23) are

Ap=-2B+1+ 2Bcos@, = L +2p(cosb, -1)

. (25)
nw
= —_— -1
L+2pB (cos i )
Thus, finally, the M + | eigenvalues, together with their corres-
ponding eigenvectors are
n = 0 l Z 3 o e 00 00 M
T 2n 3n
A\, = 1 [H-ZB(cosM -lﬂ [l+2$3(cosM-ﬂ [l+ZB(cosTA--|§]
- - — - p— - pae -
1 l 1 1
iw
l CO8 — cos — CO8 e
1 cos % cos .‘.l.f_ cos .6_3
M M
l cos 91- cos -(3-1-'- . cos 21
M M M
n
1 = l . . .
l . [ ] L4
L . . .
¢ [ ] L ] [ Y
x
1 cos M -h-d- cos 2% cos 3m
U L - - - .
(26)

JADD TR 5922 737



Now any vector, such as b of equation (7), is expressible in the form .

M

b = E b(m) qm (27)

m=0

where the b(m) are given by

(b, P™)

(P™, ™)

Bm) *

(28)

no sum on m

where the pm are the row eigenvectors corresponding to Apm (the q™ are
the column eigenvectors) and the symbol (b, pm) indicates inner product.

Now the eigenrow p° corresponding to A, =lis seen to be given by

o |1 1
p [z 11111........le] (29)

and the normalization factor (p°, q°) is

(p°.q°)=il+l+l.....+l+l+-2!-=M (30)

Thus, the vector b is expressible as

- 4 M
b= |! _L(ﬁﬂ_A_x_g_) (é-lll...ll%) TO + (b,p™) ™
L 0 m= P,q)
1 0
l .
. 0
0
1 1
[ 1 .
1 M (31)
AxQ 1
S| S e
| =
1
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Now it is easily seen from (26) that for m >0 the eigenvalues Apmy

are less than unity

Am < 1 for m>20 (32)

Moreover, for g < -zl- which is necessitated by the stability criterion,

Am > -1 (33)

When B < % the inequality holds in (33).

Thus, L
for B <3
(34)
)‘m < ] for m > 0
For example, when M= 6, B = 0.4
XO z |
Ny =1 40.8 (cos - -1) = .894
N, =1+ o.s(coa.261 -1 = 0.60
A, =1+ 0.8(cos _:_‘_' -1) = 0.200
(35)
Ny =L+ o.s(co.is". -1) = -.200
Ng =1+ 0.8(cos 2 -1) = -.492

g =1 ¢ 0.8 (cosw-1) = -0.6

Now, consider the quantity
A" b

which is typical of terms occurring in (13).
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m=0
(36)
M
n m
= E (Ap)" b q
me
oo , 1 : . ‘
Now (. 894) is less than —————— so that for the case cited in (35),
30,000
when n > 100, recalling that A, = 1,
A"b t 0" b q° = b,q°
= Wy o9 o4
y 37
saxa [ (37)
Mk 1
|
1
1
Ll
-
by reference to (3l).
Finally, referring back to (13), for n,, n, both greater than 100,
n,. n,. n n
T . ™ =(A“ FATE 4 +A T 4T )b
] (38)
1
z (nz - nl) .E_A—xQ——
Mk 1
1
1
i
L.l -
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but

PAxQ _ kAt axQ

Mk <:(Ax)z Mk
(39)
. . QAt
B eve————
hc
so that, for n, , n; both > 100 - -
1
n n . Q
T -T1 = - 1
(t2 - ty) o | (40)
i
1
1
L- wd

which is seen to correspond exactly to the analytical result of equation (5).
Thus it has been shown that the difference between the temperature

distributions calculated by the explicit difference technique at any two

time steps agrees with the analytical result after a certain time (say corres-

ponding to 100 steps) has elapsed. This shows that there is no accumulation

of truncation error despite the coarse space mesh regardless of the number

of time steps computed.
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3. PROBLEMB

Consider next the case where no heat flows through either wall but

where there is a nonzero temperature distribution at some time tq.

Tix, toy

The argument used in this case to prove that truncation error does
not accumulate after a large number of time steps is based simply on energy
conservation. First, it is known that the solution to the difference scheme
(which is simply system (6) with no Q term) approaches the flat or constant
temperature condition with increasing time and that this uniform distribution
is the correct one for large time. The only question remaining is therefore
that of a possible constant vertical displacement between the exact and the

difference solutions. Once again round-off error is not considered.
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exact

difference solution

oo e e aw wr A E® e E— e ey s me S wmp waw

0 X —l h
It is this shift which can be shown not to accumulate by virtue of
accumulated truncation error.

Consider the energy content or simply the integrated temperature for

the initial distribution.

h
T (x, ty) dx (41)

This is approximated by the trapezoidal-rule quadrature

" ™ oo no n
~ & M ° ° ng
T(x,to) dx =2 4 + (T Ceeee 42
( » O) 3 2 (l + Tz + + TM-> ( )
where njAt = to -
Define the scalar quantity " by
n n

n To TM n n n

1 = 5 + 3 + (r, +T; +....4 TM-I) (43)

WADD TR 59.22 743




e

Now consider the expression for Im'l utilizing the homogeneous form
of system (6).

| Tn+l Tn+l n i n+l
n+ o n n
O + ZM + (Tl + Tp +eeennns + TM-l)

1 n n
=2-<'ro + 2p(T, -T:D + 3_1 <T§4+Zﬁ('rnM_l-T:4)) (44)
M-1

n n n n
+ E <Tm+p('rm_l+'rm+l- ZTm))

m=1 .

Expanding and collecting, this becomes

ntl | =n n 1 n n n
I —z(To"’Zﬂ(Tl: -Ty ) +'2"(TM+Z‘3(TM-[‘TM)
n n n n
+ T 4B (1o 4T -2 T,)
+ T, + (T8 4Ty -2 T )
+

(45)
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Thus, neglecting round-off, the trapezoidal-rule quadrature is
"conserved". That is, the value of I® is the same as the value of InO
for all n greater than ny. Any error (aside from round-off) in the trape-
zoidal-rule approximation to g Tdx appears directly as a quadrature
error at initial time t,, and never changes. This rules out the possibility
of an increasing displacement between true and difference-calculated
temperatures due to accumulated truncation errors for large times.

Stated differently; the analytical or exact solution conserves the

h
integral T(x,0) dx for all time after Q vanishes. The ditference

solution conserves I” which is the trapezoidal approximation to thie integral.
Neglecting round-off, if T(x,t) is the exact solution with initial values

T (x, to) and if
h

170 = j‘ T (x, to) dx + €, (46a)
0

where €, is quadrature error at time tg
h
n
Then I = T(x,t) dx + €, for all n >ng (46b)

n
since the two integrals are equal and "=1°.

Thus the accumulated truncation error cannot cause the increasing divergence]

of the exact and difference solutions; i.e., I" differs from the integral

h
\L\ T dx at time t by ecxactly the same amount that 1"° differs from

h
I Tdx at time tg .
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APPENDIX

EXACT SOLUTION OF PROBLEM (A)

Now it can be shown that the general nth eigenrow(corresponding to

)‘n = 1+2 B(coa% - 1)) is given by

n

AR
P(n) = [-zl- » €08 O, cos 20,, cos 30,, cos 40, ... .coo(M-l)On;% cosMR,

(47)
where it should be recalled that @, = nw /M.

The expression (29) for p° is obviously a special case of this for
(n=0, 8, =0, A\, =1). With some trigonometric effort it can be shown that
the n*! norm N(n) is given by

N(n)’(p(n)'q(n))' M forn=0, M
= M/2 for 0<n <M

(48)

Having this data, it is now possible to write down a complete solution
to problem (a).
From expressions (12) and (27)

T e (A" 4 A% 24 .....+ A +A +1)D

M (
= (A 4 A2 A A b, g™
_ (m) (49)

m
M

x b(m) (An‘l + 00 * l) q(m)
m:;;

WAID TR 59-22 746




But

AT g™ ,(x(m))" o™

so that
i , (n-Z) (m)
b(m) ( (m) ..... +1)q m
Now
Bm) *
, (zw)( )
N(m)
2( ™
.M Q At (_um
N(m) he
using equation (39)
Therefore
. _Qat
Po hc
by = B2 (g™
bmx-%g:ei(-l)m 0<m <M

(50

(51)

(52)

(53)
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And, we have finally for T" the result:

po - - -1
l l
At -1 n-2 n-3
'rn: th { -2()3: +\ +A, +...+1) cosﬂ'/M
{ cos 2% /M
} cos 3x /M
L .
1 .
cos M /M
L -
. A1 n-2
+ zénz-l an Z+...+9 cos 2w /M |_ Zér; 1+g+._+9 cos3w/M
cos4n/M cos 6w /M
cos 2Mn /M cos 37/M
. l)M n-1 n-2 \ i
()‘M +\M + oo + -l
-1
1
(-nM (54)
L -
Now
Ny 1+ 2pB(cosm T _) from (26)
M
A= 1
-
and !:r:l‘l'xx:;z"’ sesee + l)‘ 1 m# 0 (55)
-\
m
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Thus (54) may be rewritten in the form

[, R [ , T
2(1-x ) [cos®/M | 2¢1-x,) |co82%/M |_20-0)
n|l -2 "1 ) Gy 54 3
1 (l_x)cosZﬂ'/M Lo cos 4%/ M Tox
1 1 . 2 . 3
1 . .
L |1 . .
1 . .
- - cos M®/M cos 2ZMT™M
- - - -
M (1 xn ) X 1
+ LI NI ) +('1) b — -:
| )‘M 1
(-1 M
Recalling that, for g < 21- i IA\m| <1 for m >0,

[~ 1
cos 3®/M
cos 6w/M

Lcos 3IMT,

(56)

expression (56)

may be simplified for a time sufficiently large that kr: and hence x;; ’

m >1, are negligible.
- - -1 - »
1 T 1 1
n Q At 1.1  |cosw/M 1l lcos2x/M
T b h c n © Z'ﬂ'
L[ B(l-cos)cos2w/M| p(1-cos<T) |cos 4x/M
n large enough so } ' :
that A"} <<1 1 .
L = L]
cos ™ E:os Zn
b - -
(57)
p l M ud 1 -y
-—‘—‘;T*"' cos 3'/M +o|o..o'+—-(-:L———— -11
ﬁ(l-COS-ﬁ ) | cos 6m/M Zﬁ(l-cosM'Ml ) 1
cos 3w M;
S . 0
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In the above expression, only the first term is time-dependent.
This corresponds to (and agrees with) the first term in (1). The remaining
terms must correspond to the second and third terms in (1)« A numerical
check indicates that this is very closely satisfied for the particular case
where M * 6, In fact, the error can be shown to be given by the difference
between exact integrals or weighted integrals of these terms and seven-

point trapezoidal-rule quadrature approximations thereto.
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CHAPTER IV - PART C

THERMAL STRESSES IN SPHERICAL SHELLS

OF ARBITRARY THICKNESS UNDER

ARBITRARY AXISYMMETRIC TEMPERATURE DISTRIBUTIONS

By Dennis Eisen and Frank Lane
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C. THERMAL STRESSES IN SPHERICAL SHELLS
OF ARBITRARY THICKNESS UND ER
ARBITRARY AXISYMMETRIC TEMPERATURE DISTRIBUTIONS

1. INTRODUCTION

The present report describes an analytical method for determining
the elastic stresses developed in a complete spherical shell of arbitrary
but uniform thickness under axisymmetrical thermal loading. A related
problem has been solved by McDowell and Sternberg (Ref. 1) with the
restriction that the thermal loading be entirely steady (i.e., the tempera-
ture satisfies Laplace's equation). It is the purpose of the present report
to extend their analysis to the case where the impressed axisymmetric
thermal loading is an arbitrary one and may have come from transient,
unsteady conditions. In other words, the temperature distribution is not
restricted to be harmonic in the present analysis.

The results should be useful in two respects. First, they provide
estimates of thermal stresses in the nose region of blunt-nosed radomes
under transient thermal loading. Second, they should serve as numerical
checks on the solutions to radome thermal stress problems obtained by

thin shell theory in the nose region.
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2. ANALYSIS

e e e

In the absence of body forces, the general equations of thermoelasticity

are given (Refs. 1,3 and 4) as

Equilibrium: , :;:;j =0, (l)

Stress-Strain: 1’. SZp.[ j( ekk"' Ity GT>5iJ R (2)
1-2v

Strain-Displacement: Zeij' ! + a“i

axj axi

(3)

where p is the first Lamé constant, v is Poisson's ratio, a the coefficient
of linear expansion, and x; a rectangular cartesian coordinate system.

In the absence of surface tractions, the boundary conditions are given as

Tij‘j =0 on B, (4)

where lj are the scalar components of the outer unit normal to the
boundary surfaces B.

The solution to (1), (2), (3) will be obtained in the following manner:
The complete solution [S] will be subdivided into two solution-.[s"] and{s*]
such that

61= (s + (1. (5)

where S°] represents any particular solution to the general equations (1),
(2), (3), and [S"] is the solution to the so-called'residual problem' which

satisfies (1), (2), (3) with T =0 and annuls the surface tractions which

(s9] gives rise to on the boundary B.
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It may be noted that a particular solution to (1), (2), (3) may be

found immediately by setting

u =0 (6)
dx,
1
with vig= alltv) ko T. (7)
l-v

The temperature field T in this problem need not be steady-state
(i.e. V3T # 0) and therefore ¢ need not be biharmonic.
This known axisymmetric temperature distribution T (r, cos )

may be put in the form
@®

T (r, cos 9) = E F,(r) Py(cos9) , (8)
n=

where r, 0 are the radial distance from the origin and latitude measured
from the x, axis, respectively. (The cyclic longitude coordinate may be

denoted by Y.) The functions Fp(r) are given by

L

Fp(r) = Zg“ T(r, cos 8) Pp(cos 8) d(cos ). (9)

-1
The particular solution to the Poisson equation (7) may be obtained by
first substituting functions of the type
¢, (r, cos 8) = fi(r) * Py(cos 8) (10)

into (6) where ¥? in spherical coordinates becomes, for axisymmetry,

2 9l 2 9 cot® B T
v + = 2 o — 2 (L)
* or? r Oor + r 98 r2 ge* °
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There rerults a differential equation on f,(r),

n{n+l)

fnt'(r) + _f_ fn' (r) - ")

£(r) = ko Fy(r) , (12)

for which a particular solution may be given in terms of a Green's

function as
Ty

£ () = Ko \:;n-l (2 on ;—n+l] F_(¢) dt , (13)
2n+l

where r; is the radius of the outer shell, (The radius of the inner shell

will subsequently be denoted by r, .) And hence,

® ® ry
k o= -
E ¢ (1, cos 8) = E Zn‘:l j [r nelgmt2 mye “"}*n(g) dg + P, (cos 8)
n= n=
r

(14)

is the particular solution to (6} that is sought.

For notatiounal purposes define

r
k
Gylm) = ch;lf e 3 M E ) ag (15)
T
k oo,
H (1) = Zn:l e 4 ntl F_(¢) dg , (16)

and denote cos 8 by p and sin® by f) Then [Sg] may be written as

¢p(rp) = 22 (G (1) - Hy(n) ) Po(p) , (17)

radial deformation: u: =

o
0 - [(n+l) Galx; + nHy(x)] Polp),  (18)
o

(¢]

meridional deformation: w°® =1 8% (4
T

55 -Pr [Gn(r) - Hn(r)] Pp(p), (19)

1]

n
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= [(n-H) (n+2) G (1) - n(n-1) Hy(r) + Kk, Fn(r)] P, (p), (20)

o o
e e Enm Gafe) +nHp(1] Pote -p[cn(r) -Hn(rﬂP;m (21

YYn r r
o 1 awd '
e;q\:_l_l;_‘_. +";' —é‘vﬂi s '[(n+l) Ch(r) +an(rﬂpn(p) - p[Gn(r) - Hn(rﬂpn(p)

+ (1-p%) [Gn(r) - Hp(r) |Pp(p), (22)

l 9’ W ow 1
e:°n=%% aen - rn + 8rn>=$ [(n+2) Gn(r) + (n-1) Hn(r)d Pn'(p), (23)
T:’h =2 [(nﬂ) (n+2) G, (r) - n(n-1) Hn(r)] PL(p) , (24)

T:Y = - 2"{]}”“ Gn(r)+nl‘h(r)+kan(r):| Pn(p)+p[0n(r) - H(r) P,;(p)}. (25)
n -

T;e; -2 u{[(m [) Gp(r) + n Hy (1) + ko Fy( r)]Pn(p) + P[Gn(r) - H,,(r; Pa(P)

- (l-p‘)[cn(r) - Hn(r)] P,','(p)}. (26)

o

Trenzz pa [(n+2) G,(r) + (n-1) Hn(r):] Pn'(p) , (27)

where the primes denote differentiation with respect to p.

The next step is to cbtain the solution to the ''residual problem"

(where T 2 0) and whose boundary conditions are

T:rn(rk, P)=z=-2p [(m—l) (n+2) Gy(ry) - n(n-1) Hn(rk):] Pn(p) (28)

Tro (T B ¥ - 2n 6[(n+z) G (ry) + (n-1) Hy rk)] Palp) (29)

WADD TR 59-:2 757




R T L

where k= 0, |, In view of (15) and (16), on the outer surface

T:rn (r;,p) =0, (30)

%
TrOn(rltP) =0, (31
while on the inner surface ,

-r;'rn (rop)= - 2 pEnﬂ) (n+2) Gu(ro) - n(n-1) Hn(ro):an(p). (32)

o, (orP) = - 21 'ﬁ[(nw-) Gn(rd + (n-1) Hn(ro)] Pip .  (33)

The solution of the residual problem of Elasticity Theory can be traced
through Refs. 6, 5, 7, 2, and finally 1, where McDowell and Sternberg
have presented an explicit solution in the form of a linear combination of

four separate solution fields. That is,

[s‘,',] . ;n[A,;l + bn[BnJ + cn[A_n_l] +d_ [B_n_l] , (34)

where for [An] :

ad o n
2pu=—7— (1)) B, (p) ., (35)
A r‘z r.n '
Zpws= -P— (-;‘) P (p), (36)
e\
Trr = n‘n'l) (‘;,l) ('F‘) pn(p) » (37)
Tyy = (frlal [n (7"—)" P,(pi - p(,ﬁ)n Pn'(p).] ' (38)
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PRRTES  ae

%

Too = - |2 )" B - o (£)" B ﬂ (39)
Teo ® - (n-) (2 85" B! (p), (40)

and for [Bn] :

2puz-(n+l) (n-2 +4v) r (rL‘-)n Pn(p) , (41
2pw=(nt5 -4y) r p (_;_;)“ Pl(p , (42)
Tor = - (n+l) [(n+l) (n-2) - Zv] (-};)n B, (p , (43)

‘|'YY z - (n+l) |n-2 - 2 (2n+tl) v](ﬁn Py(p) + (n+5-4v) p T n%'(p) , (44)

Tog = (ntl) (n? + 4n + 2 + 2v) (-,1.‘-‘)" Pa(p) - (n+5 -4v) p (-ﬁ)nP,:(p) (45)

Teg= (0¥ +2n-1+2v) S(.;.l)" P.(p . (46)

The solutions forE\_n_J and[B_n_lare obtained by replacing n by -n-1
wherever it appears in equations (35) through (46). Hence for

[A-n-l] (and noting that P__ _i(p) = Ph(p) ):

2
2pu=- () = ™' @), (47)
A f rontl_,
2pw=-p — (F)  Fulp, (48)
Tee = (nt0(ne2) (2° CM™! BL(p) (49)
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Ty = - (20 (41 R R+ pE™ P&(p)] : (50)

Tog = - 97 [(e2 + 2001) @™ Bo(p) - p BB P;(p)J (s

T o= (n+2) @& P @™ee (52)
and for [B_n_l] :

2pu=-n(n+3 -40) r (307 BLR) (53)

2pw =-(n-4+ 4v) r B (2™ B, (54)

Ter= 0 ["(“"3) - 2'] (f;-l)n'H Pnlp) » (55)

n+l

TYY z -n [n+3 -2 (2n+l) v (—‘;,-l-)n"'l P,(p) - (n-4+4v) p (-zi.l) Pa(p), (56#

n“pn(p) +(n-4+4v) p (-‘;l-)"+l Pa(p), (57)

2 r
TOO‘ -n [n -2n - l+2.v](-rl)

To® (n2-2+2v) B (-‘}-)"“ P p) . (58)

The coefficients a,, by, c,, d, are determined from the boundary
conditions on T:r and Tr'é . Combining (37), (43), (49), (55) and equating
to (30) and then (32); and then combining (40), (46), (52), (58) and similarly
equating to (31) and then (33) will yield n sets of four simultaneous equations

for the determination of a,, by, Cnr dpe
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These equations are
n(n-1) a, - (n+l) [(n-ﬂ) (n-2) . Zv] bn + (n+l) (n+2) cn+ n[nz+3n -Zv}dn=0 ’
(59)

“(nsl) ap +(n® + 2n-L+2v) by + (nt2) ¢y + (n? - 2+ 2¥) d, =0 ,  (60)

n(n-1) p"" ap - (n+l) [(n+ ) (n-2) -2‘)} PR by + (nt1) (n+2) p™ ey
(61)
L

+ nEtz +3n -qui ph” dp=- Zp.!-(n+ 1) (n+2) G,(xg) - n(n-1) Hn(ro)] ,

-2 -n- -n-
~(n-1) p" " “a_ +(nf+2n-1 +2v) p™by +(n+2) g2 3 ¢y + (n? -2 + 2v) s ay

_ (62)
-2 L(n+2) G,(rgy) + (n-1) Hy (ro)] .

To
where p £7— < |, Note that the terms in [S:J containing
1

ag, a;, dy will not contribute to the stresses and therefore represent

rigid body motions and will be indeterminate.
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APPENDIX 1

° o
SIMPLIFICATION OF egg AND Tgo

o o
The dependence of eeon (Eq. 22) and TOGn (Eq. 26) upon
P;;(p) may be removed in the following manner:

The differential equation satisfied by P, (p) is well known to be:
(1-p* )P =-(n? +n) B, +2p P} - (A-1)

And therefore the original expressions can just as well be written as

egens - [(n+l)z G, - n’ Hn] P,(p)+p l:Gn - Hn] P,;(p) . (A-2)

‘r:en z-2p [}nﬂ)l Gn- n? Hn+kan] P, (p) -p[Gn - Hn] Px{(P)L (A-3)
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APPENDIX II - TEST CASES

Casel: T(r,p) = T, (constant throughout shell)
This case should give a trivial stress distribution,
By inspection Fo(r) =T, ; Fn(r) =0, n £0.

r

1
Golr) = ko[ r° 4% To di "3[' ko To [“;”3' l]

Ty

Ho(r) = ko [ r2¢ To dt =3_‘- ko T [@-‘lrl)z - 1]

o 3
The particular solution gives T . =2p [Z Cb(r)] = -%- n koTo[(.;l) - l:l

o 2 .
and  Tog =- 2 [Go(r) + koFo(r)] = -__3'_‘. [}?) +,_] ‘T%

o
Tr°= 0

For the residual problem the simultaneous equations reduce to

Z(l+V) bo + ZCO = o

2(14v) by + 2 ¢4 pl =-2p [Z Go(ro):l

which yield

2 2 pkoTo
Co = = == kaT . b, = ——
o 3 B Folo ’ o (t+v)

3 r..3
and T:r =2(l+v) by + 2 (-?-) Co = _43& koTo [l - (-rl)]

Toe = 2(1+v) by - E2)’ ¢q = —72_,1"— koTo [z + (-'i.l)’] TY‘;

o= 0

r
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and hence T,, = Tr:. + ‘T:r =0
- +© *  _
Too = Too * Tgg =0
TYY = TOO = 0
TrO = 0

which is the correct result,

Case2. T(r,p) = To () cos @ = Tp () Py(p)
This (linear temperature distribution) case should also give
trivial stresses
By inspection F,(r) = To(-;-'—-) ; F,(r)= 0 (n# 1)
1

n
-4 4
G;(r)=53°_f-:l— 1, d;=_l‘_<;:'_°_ [4—',1) -(E,-l]
r

n
k =1 T
Hn(r)=1°-f-%wodc=kz : [HHF—,)]
r

The particular solutions are

o

T:r z=2p* 6 Gy(r) cos 0 = 45“ koTo [(.;L)

%1-)] cos O

. 2 4 .
T:o = 6p Gy(r) 8in O =z p koTo[(fil..) - g"_)]- sin 0
4
T;O = -2p [3 Gy (r) - kg F,(r)] cos 0 =--Z§E- koTo[(.?.) +4(-§-)] cos @
o o
"l’YY = TOG
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The simultaneous equations become
2(242v) by + 6 ¢; + (4-2v) d =0
(242v) by + 3¢; + (-1+2v) d =0

2(2+2v) pby + 6074 ¢; + (4-2v) g2 g,

-2 e 6Gy(ry)

(242v) p by + 3574 ¢ 4 (-142v) p72 q) = -2 e 3G, (rg)
kT
from which d; =0; ¢, =- 2 koTo G, :LP_?__
15 5(1+v)
T2 = [4(+v) () b, + 6¢I0t o= e[ - n¥cose
and rr = 4( +V) (?‘—) 1 (-1'.") Cl cos = ?—Mko oh rl - ‘_‘“ cos
* 4 . 2 f
Toe = [2(l+v) () by +3 &) c,]am ® = - nkoT, L(.%) - (;u‘i]-ine
Tao = T =|8(l+v) (=) b -3(—1;1)4 080 =2 uk T —4 +HE) Fcos 0
68 - vy ('i';’l Cijcos 'g‘i"oo‘,-—') 7
- =
o * _
Hence Ter = Ter t Ter =0
o .
TrO = TrO + T:O =0
= = o x
TOO = TW- Tee +'1'oe =0
which is the correct result.
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ey

Case3. T(r,p) = —— T,

To%o (—%— - ) (Surfaces at different uniform temp.)

This is a purely radial temperature distribution for which the

stress distributions are easily calculable (References 3 and 4).

ToTo (rx _) F(r) = 0 n 40

By inspection Fg,(r) =

r;-r
n
-3 Tgor r koTor 3 1
Golr) =k, | r* 070 (1 _1)¢? ceoflady lay,t
ol7) =kq T to (‘ )‘ dg = — 3'("1'1) z(—%—)+3
T

r
r‘l TO ro (:‘ ->‘ d‘ - kOTo rO [__;_ é)l _ é)+%]

Ho(r) = k, —
17%0

. ) . (<] z‘lkoToro l r 3 r 2
The particular solution gives T,, *2p [ZGo(r)]t-—;-:-l;—— 3 (_rl.) -(.i,l) +-i-

o
Tre =0
o _.0 -ZEkOTO"olr’ Lr, 2
TYY T“:-Z”[G"(r“k"l%(r{l: - To gtz -3

For the residual problem the simultaneous equations become

2(l4v) b+ 2 co =0 (H

a,+ (~1+2v) bg+ 2 co + 2(-l4v) dg = O (2)

2(l+v) by + Zp-’ Co = -2 [ZGo(ro)] (3)

3P +(-142W) bo+ 29 co+ 2l-14V) p 'dox - 2p [z Go(ro)-Hdt‘g
(4)

Only (1) and (3) need be considered; they yield

k,Tor -
gl‘OoO i 3 -1 2 -¢o
3 P 3 ° +v

[
T T
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Hence T:r = 2(1+v) bg + 2 ‘_1})3 Co® Zuf;:'roro '[_; ;! - ‘;l‘.,% [("?‘)’ - I.]
(1-p") (ry-xg

T:O:O

TE = T* 2 2(14) by - £ ¢ =HEoTo%o [.‘. EIPRLIY] B POE ’]
00 ~ vy b -6 co ToEYE— 3P P *3 +(A

And adding and simplifying:

TrO =0 and,

2.2
_“ETO Iona l it
T — rp+rg = (rf+r,ro+rg)+._;. ;
l-v r‘ -ro r

QETO rorl 2

2
Ton = + L 2 2 I re
00 T, Ty = —— (rl+ tyr .t r ) -
l-v r) - rc’, 2r 170" "o 2r?

This solution checks with the stress distribution calculated using

the simple schemes available (Ref. 3 and4) for purely radial temperature

distributions.
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CHAPTER IV - PARTD

DIGITAL PROGRAMS FOR THE STRUCTURAL ANALYSES
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UNDER MECHANICAL AND THERMAL LOADING

By Daniel E. Magnus
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SYMBOLS

]

a fraction of meridian at which truncation occurs
aij' aij metric tensor

dm coefficient =0 for m =0 ; =1for m >0

h shell thickness

ki spring constants i=1, 7

2 meridian length, extended to apex (L)

m harmonic number

n number of spaces along generator

P pressure (lb. /L?)

w, v, u physical deformation components (See Figure 1)

y!',y?,y’ coordinates (See Figure 1)

Y 2 equivalent to y* and y*, respectively

A matrix associated with quadratic form

Cm coefficient =1 for m =0, =1/2 form >0

F free energy

J Jacobian or volume element

K, edge moment spring constant at base; k, /¢ tf

K, edge shear spring constant at base; k, /¢

K, transverse displacement spring constant at truncation; k, /e ¢
K4 bending spring constant at truncation; k4/e 2

Kg edge moment spring constant at truncation; k_r,/u!z
K¢ edge shear spring constant at truncation; kb/e

K7 axial stretching spring constant at truncation; kq/e!
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R,, R;

R
ij
o-ll

22
O

12
Ok

principal radii of curvature; alsoR £ R,
temperature; T, reference temperature
virtual work

coefficient of linear expansion

local meridian - curve slope

B at apex

Young's modulus; ¢, = reference modulus
Poisson's ratio
longitude angle = yl

cone semi-angle

stress tensor

strain tensor

physical stress in 8 direction; k =1,2,3 for z=-h/2, 0, h/2
physical stress in y2 direction; k =1,2,3 for z =- h/2, 0, h/z

physical shear stress; k=1,2,3 for z=-h/2, 0, h/2
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o

D. DIGITAL PROGRAMS FOR THE STRUCTURAL ANALYSES OF
HOMOGENEOUS CONICAL AND OGIVAL SHELLS UNDER MECHANICAL
AND THERMAL LOADING

1. INTRODUCTION

In this part, the digital programs for the structural analysis of the

| homogeneous conical and ogival shell under mechanical and thermal loading are

described. Both programs are based upon the same analytical approach, but
as will be seen,the two programs use different numerical procedures in
formulating the energy integrals. In general, the numerical techniques used
in the cone program will be explained in detail and then supplemented by any
variations used in the ogive program.

The cone program is designed for the structural analysis of conic shells
with closed or truncated nose conditions. By merely changing the problem
inputs and machine setting, the analysis can be changed from one condition to
another. In this regard, it should be emphasized that the closed cone is not
analyzed as a specialization of the boundary condition used for the truncated
cone. Rather, independent requirements are imposed for the closed cone;

a factor which adds considerably to the internal complexity of the program.
The ogive program is for the closed nose shell only.

Both programs are designed for the analysis of any general loading where
temperature and/or pressure are involved. In order to analyze a shell with a
generic loading, the load must first be expressed as a Fourier series in the

0 direction. (See Figure | for nomanclature.) Each of the Fourier
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harmonics must be separately analyzed by the digital program, and since the
analysis is based upon linear theory, the final deflections and stresses can be
found by superimposing the results from each harmonic. Taking account of the
lack of precision of most aerodynamic and thermal input data derived from
unsymmetric loading conditions, it is probable that no more than two
harmonics will be required to adequately describe a realistic loading.

The analysis of the shell geometries is based upon a variational principle
involving the 'free energy'', F, of the system and the external work, W, of the
mechanical loading. The concepts and analytical details of the analysis
appear in Part A. It is found that the nth harmonic component of the free
energy can be written in the following form, which is suitable for both the cone

and ogive geometries:

J 1 6
(F-W, * 27Cme !’ Sgidv’dv‘[({;) T+v nap*r“m' Ty
€ ZC(T-TO) ap 2 -L
- (‘_o) — — * Map| -\ 79y (‘o) w (1)
where
rofY Qo8 BT o R,

As will be shown in Section 2, the numerical method of evaluating the
energy of the cone is not the same as the method for the ogive. For the cone,
the integration through the thickness (y3) is carried out analytically,and the
integration along the generator is done numerically. For the ogive both the

integration through the thickness and along the generator are done by
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numerical mesthods; the integration through the thickness being carried out
using a Gauss quadrature. In both programs the integral along the generator
is expressed in finite difference form as a function of the w, v, and u dis-
placements of the mesh points. Then, by taking the variation of the energy
expression, a set of linearly simultaneous equations for w, v, and u are
obtained for the n stations along the generator. The system of equations have
the very important property of being symmetric positive definite, which is a
direct consequence of the energy formulation. As will be shown in Section 4,
a positive definite matrix is a sufficient condition for the block tri-diagonal
method of solution of the equations.

By way of contrast, an alternate method of obtaining the simultaneous
equations will be described, and the inherent disadvantage noted. The
variation of the energy expression, equation (1), could be taken in analytical
form thus resulting in the Euler equations and the associated boundary
conditions. These differential equations would then have to be expressed in
finite difference form. Unfortunately, the final simultaneous algebraic
equations would not necessarily be symmetric,and the coefficient matrix could
appear as either positive definite or indefinite depending on the method of
differencing. Furthermore, the solution of the equations would be considerably
more involved. This disadvantage is particularly significant since the matrix
under consideration can be of the order 450.

As yet, no mention has been made of the boundary conditions to be

imposed. In general, the boundary conditions are expressed in terms of
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springs, whichwary in magnitude from zero to infinity. A zero spring implies
the shell is free of a particular constraini. For finite values of the springs,
the energy contribution is computed and added directly to the energy matrix.
An infinite spring represents a rigid constraint, aﬁd in order to avoid
numerical difficulties in the limit, special procedures are employed.

In Figure 2 , the various types of spring configurations are shown.
The base conditions for the cone or ogive are described by springs K; and K;.
The other 5 springs shown in Figure 2 are applicable only to the truncated
cone. With these springs, it is possible to impose any boundary condition at
the truncation including the conditions of the unified radome with a nose boom.
Regarding the closed-nose cone or ogive, independent closure conditions are
imposed depending on the harmonic number. The methods of introducing the
spring and closure conditions are described in Section 3.

Upon solving the system of simultaneous equations, the displacements
w, v, and u are found for n points along the generator of the shell. These
displacements and the first and second derivatives with respect to yz are the
necessary variables for determining the state of stress, which is discussed
in Section 5 below.

The programs have been written for the IBM 704 digital ¢computer with
a core capacity of 8K and at least 2 magnetic tapes for the cone program and
3 magnetic tapes for the ogive program. In addition, the ogive program
requires 2 physical drums. The programs can be read into the computer

using either binary cards or binary magnetic tape. The latter method of
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operation is, of course, desirable for economy reasons.

When using the maximum number of spaces (n = 72) along the generator
of the cone, the total running time for the zeroth harmonic is less than 3
minutes; for the first harmonic with 216 simultaneous equations, the program
requires approximately 5 minutes. Approximately 75 seconds of this time
are required to solve the 216 simultaneous equations,

In the ogive program, the maximum number of points along the generator
was increased to 151, thereby requiring the solution of 453 simultaneous
equations for the first harmonic. As yet, a complete problem has not been
run using the ogive program, because part of the stress calculation is still
being modified. Hence, an accurate timing of the program is not available,
but it is estimated that the total running time will be 10 minutes,

Numerous test problems have been analyzed using the cone program, and
5 of these problems are discussed in Section 6 of this report. Most of the
problems are for the zeroth harmonic since these problems are more
amenal;le to theoretical analysis, but some discussion is included for a cone
with a first harmonic thermal loading. The ogive program has been used to
compute the displacements w and v for the zeroth harmonic with constant
pressure loading. These results are presented in graphical form and are

compared with theoretical results based upon membrane theoi'y.
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2, FORMULATION OF THE ENERGY MATRIX AND LOADING VECTOR

For the cone and ogive, which are axisymmetric shells with o) = .'ij =0

for i f J. the free energy part of equation (1) can be written in the follewing

form:

-
bl o Lalh22  |fn ]

3
5 €1 J < 3 1122
Fm-ztglﬂhzl__ 2 (—‘o) dyzdy {nu. 12, -qzz} 0 2aa 0 M

‘ vazzau 0 azzazz
L Jdb

- Za(l+v) (T'TO) { a_ll'o'azz} nlz

2 (2)

Equation (2) is in dimensionless form with all physical dimensions scaled by
the length of the generator from the apex of the shell to the base mounting.
The above energy integral can be numerically evaluated in finite
difference form using two different methods. One approach is to expand
analytically the iy in terms of the displacements w, v and u and perform
the indicated matrix multiplications with the metrics. The integrand of the
energy becomes a complicated expression involving various powers of the
displacements and their derivatives. These must be integrated in the yz and

y3 directions. The integration through the thickness can be carried out by

2 direction. The

analytic procedures leaving only a single integral inthey
integrand of the final expression is expressed in finite difference form and the
integration replaced by a summation. This approach for the evaluation of the

free energy expression is used in the cone program where the final analytical
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expressions before introducing the rummation procedure are not too com-
plicated.

2 direction was

For the ogive, the expression to be integrated in the y
found to be complicated and would require extensive programming effort.
By using a slightly different approach, a simpler programming procedure was
found. This method consists of expressing the njj in finite difference form
and introducing them directly into equation (2) thereby eliminating the analytic
steps of the procedure used on the cone. The matrix multiplication is done
numerically and using a Gauss quadrature, the matrix is numerically
integrated through the thickness. Finally, the matrix is integrated in the yz
direction. This procedure is specifically applied to the quadratic form in
equation (2); the linear form involving the temperature terms is not complicated
and can be integrated analytically through the thickness as was done with the
cone.

After the numerical integration by either of the above methods, the

free energy and external work term can be written as:

1/2 X' AX = (W-T)X (3)
where X is the displacement vector with components w, v, and u at the various
mesh points along the generator, XAX is the quadratic form of the energy
expression and (W-T)X is the linear form of the work term W combined with
the linear form of the temperature terms T appearing in the free energy

expression. By taking the variation of equation (3), the following equation is
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obtained for the displacements:

AX = W-T (4)
where the matrix A is of symmetric positive definite form. For simplicity
in solving the simultaneous equations, the rows and columns of matrix A are
arranged so that all non-zero elements are contained in 15 diagonal rows.

With this arrangement of the matrix, the order of the components of the dis-
placement vector is:

Vi
v

wi
X = $ v} (5)

Wntl
Vn+l

Untl

L i

where ntl is the total number of points along the generator. The arrangement

of the X vector is the same in the cone and ogive program except for fictitious
elements which are placed before w) and after u,,in the ogive program. These
elements will be discussed in the latter part of this section.

a. Energy Expression and Grid Spacing for the Cone

Omitting the rather lengthy algebraic details, the free energy for

the cone can be written:
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3 1 nAh/2
I’Emtl 1
= ) f f dydz Z(nu-kv sin\ - wcos\
l-v
a -h/Z

2
m(mw-u cos\) _ dw -
+z[ Y sin % sin )\ d_y]> < z.._z.

- A d
+ 2v<%¥- z %}@u+vninx -wcos\ + 2 [m(r?v:i: c;os ) . 'in\a';j)

dm(1l-v) du _ _51__ mw-u CO8 \
+—z_Z—<Ady u sin \ - mv+z[ dy Y sin X

2
] mw-u cos A\ + dw
- sin )\ y sin \ m dy

dv m (mw-u cos \
- 2(1+v) [a(T-To)] <A-a—}; +mut vein\ -wcos\ + 2 [ { y sin \ )

2
. dw d"w
-l:l.nk'd—Y -Ad?])

(6)

where A=ysin\ - zcos\ = Jau

l;m=o o,m=o0
and C,, = i dm=
1/2; m >o lI;m >0
In many shell investigations, various approximations are introduced

into equation (6) to reduce the equation to a simpler form. For example,

Love's first approximation (see Reference 1) drops the z in the Aterms.
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Still other methods expand the A"l terms as an infinite power series and from
order of magnitude studies, only certain terms in the series are retained.

For the digital program, however, there are no reasons for introducing
approximations into equation (6). As will be seen, the Al terms at worst
introduce logarithmic terms upon integration through the thickness, and these
terms are certainly not difficult to evaluate in the digital program. Hence,

equation (6) is integrated assuming a uniform wall thickness and upon

rearrangemeant becomes:

1
3 2
xC el dv dv
Fm=" l'_'::r'£ dy< h (a';) y sin M +2v-a;;(mu+ vein\ -wcos \)+

2
dm(l-v) [(ﬂl_) y sinx -2 (u sinn + mV)] +
2 dy dy

e {(mu + vsin \ ~-wcos)\ )z +.§.’zn_.(l-v)(u sin )\ + mv)z} +

3 W (a2 2\ 2 2
h dv) (d w <d w) . d“w | m(mw-ucos)\) dw
—d2 [ cos \ + y sin\ - 2y - gin\—
12 dy/ \a dy2 dy2 y sin\ o

2
dm , d /fmw-u cos\ . du) d /mw-u cos \
$om g ga ___.__> A\ -2f8s) 4
2 (1-v) [dy( y sin )\ y #in dy/ dy y sin \ cosh +
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mw - U cos\ dw d mw - u cos )\ '
2 {- + —_— +
( Yy mdy dy y 8sin \ >

2
- - d .
gl[mimw-u cosn) _ i\ SWIT o 4 g|Timy ucomh) sinx-r](mwvsmk-wcoﬂ) +
y sin \ dy y sin\ dy
i
d mw-u cos\ dw 2 mw - u cos )\ dv}\h
2B (l-y|(- ——— ¢+ m—) ytan A+ 2 (u sinA+ mv) -m——,i4
2 y dy Y dyJ
al
dv . . | +0)
-h 2(l+v)(a;- y sin\ + mu + vsmk-wcos).) +
( ) 2 !
2 dv m(mw - u cos\ .y dw ., d w)T(l)
- h®"¢ 2(1+ (-~cosx+ - - 8in\ — - y sin\
{ (1+v) dy y sin \ dy y dyz j
3 d?w\ (2)
- h” {2(l+v) (cosx ) T (7
dy
where the logarithmic terms are
e = 1 in l+€}': cot \
cos \ L -3 cotr
(8)
f=- + ey tan\
cos\
784
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and the temperature terms are in the integral form

r - r
+(0) n/2 1

1 (VI %J a(T-Ty) { z/h dz . (9)
(2) "h/2 2/n2

- =2/

- The quantities T (0), T m,a.nd Ta?which can be the results of a heat condition
analysis, are the necessary thermal inputs to the digital program and must
be specified at the mesh points along the generator. Since the coefﬁcient of
linear expansion a appears under the integral sign in equation (9), the cone
program can be used for constant or temperature dependent q . Regarding
the elastic material properties, Young's modulus ¢ has been assumed
constant and factored out of the integral in equation (7); it is not a required
input to the program but is used to scale the pressure inputs as shown in
equation (1). Poisson's ratio v, which is assumed constant, appears in
equation (7) and is a required input to the program. The other program inputs
are: a, the distance from the apex to the location at the truncation;

\ , the semi-angle; h, the thickness; and n, the number of spaces along the
generator between a and the base mounting. The number of mz2sh spaces n can
be varied from 12 to 72 in increments of 12.

As shown in Figure 3 , the program does not assign a uniform mesh
to the cone; rather, a uniformly fine mesh is used near the edges, and a
coarse mesh is used in the middle. The two edge arecas with closely spaced

points will be called the boundary region while the area between the boundary
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region is called the membrane region. The program assigns n/3 spaces to
the membrane region and the remaining 2n/3 spaces are divided equally
between the two boundary regions. Further, the program assumes the
distance, 6, between stations in the membrane region is 4 times as large as
the spacing in the boundary region. This is sufficient information to com-
pletely establish the mesh points along the generator,

To express equation (7) in finite difference form, the formulas shown
in Appendix A were used. Note that special formulas were required at the
junction points between the membrane and boundary regions. For the matrix
of the quadratic form, the difference formulas are applied to the terms
multiplied by h3/ 12 in equation (7) and integrated over the mesh. This
results in an n x n matrix, which is added to a null matrix A;. Then the
terms multiplied by f, e, and h are evaluated in the same manner and are
added directly to the matrix A| as the computation proceeds.

b. Energy Expression and Grid Spacing for the Ogive.

For the ogive, the quadratic portion of the free energy expression
(equation 2) is numerically integrated in both the yz and y3 directions. To
avoid some of the differencing problems which were manifest in the cone, the
n i terms in the positive definite symmetric matrix {‘q' T'q} are differenced
by first using a two-point forward first derivative and a three-point central
second derivative. The expression is then reformulated by replacing

all first derivatives by a two - point backward
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first derivative. For the uniform mesh the resulting quadratic forms are then

combined in the £ollowing'manner:

' =4 ' L 1
{n T'} 2 {n Tﬂ}forward + 2 {n T?] backward 0)-1)

where T ® Tnﬁyb.

The energy term is then numerically integrated in the y3 direction

by using a five-point Gauss quadrature; that is, at any given station yiz.

o

I (v} «y*) | ovgl ;: a; J(q;)  elq) | |
2(l-v(y’) ) ¢, '} ) = 2(1-v*(q.)) €o "fl T (b-3
Y= -}z}- qi q.
i

where the q; are h/2 times the normalized five-point Gauss quadrature
coordinates, and the a; are h/2 times the normalized five-point Gauss
quadrature weighting factors. The grid spacing through the thickness of the
shell consists of the five mesh points whose positions are dictated by the Gauss
quadrature (see Appendix B). Note that since the normalized Young's modulus
and Poisson's ratio appear under the integral sign of equation (b-2), the
program will permit the analysis of non-homogeneous but isotropic materials.
Specifically, the program has been written for v and ¢/¢, varying through the
thickness (y3) but uniform in the yz direction.

Integration in the yz direction is then achieved by summing over all
stations along the generator. The mesh spacing along the yz can be chosen by
the operator to be either a uniformn mesh of n 4+ 1 points along the entire length

of the shell or a non-uniform mesh representing a membrane region for the
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first two-thirds of the shell, and a boundary layer region for the remaining
one-third of the shell near the base. For the latter case the spacing of the

boundary layer region is taken to be one-fourth that of the membrane region
and the total number of spaces n must be divisible by three. Special

- differencing formula must be used when at the juncture point and note, in

particular, that equation (b-1) will be replaced by

{n'Tn} = a ¢n'Tn + b in'Ty (b-3)
juncture forward backward

where a and b are appropriate weighting factors.
In order that the forward and backward difference schemes may be

applied to all stations along the generator including the first and last peint,
it has been necessary to create two fictitious points, number zero and n + 2.
These points are subsequently eliminated by defining their contributions as

w

g = 2W) " Wy Wiup T 2Wo - Wp
Yo = Zvl =Vy s Vpi2 ¢ va’1 =V,
U = Zul - u2 » Upio = 2un+1 ~u,,

when no other boundary or closure conditions take precedence.

As has been already discussed, the program for the radome ogive is
in some respects more general than the program for the cone in that the shell
material need not be restricted to a homogeneous one, and the operator may
select either a completely uniform mesh or one representing the membrane and
boundary layer regions of the shell.

In addition to these options, the operator may also select, by proper

choice of sense switches, Love's first approximation to the ogive analysis.
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This approximation eliminates all £/R| and z/R terms in the formulation of the
problem (see Reference 1). Another option available to the operator permits
the solution of a non-truncated cone problem.
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3. BOUNDARY CONDITIONS

The energy formulation of the previous section results in a set of
simultaneous equations, and for n + 1 grid points along the generator, there
are 3(n + 1) equations for the w, v and u displacements. A special case is
the zeroth harmonic where by symmetry all the u displacements are zero.
The number of equations is then reduced to 2(n + 1). In the following
discussion, the general case will always be assumed.

The matrix A of the simultaneous equations is singular and the rank
is 3 n+ 1, By physical reasoning, it can be seen that such must be the case
because the cone is free in space and an arbitrary rigid-body motion can be
added to the displacement vector. Hence, the displacement vector is not
. unique. This condition is easily changed by specifying the base as a plane of
reference for the v and u displacements. Hence, the v,;) and u, ] rows and
columns of the A matrix are eliminated. The displacemeant vector of
equation (5), which is specifically written for the cone, then becomes:

[ w ]

vi
s |

X = & wp . (5a)
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For both the cone and ogive, the boundary constraints are imposed using

an energy technique; that is, the various boundary conditions are represented by,

springs loading the edges and the strain energy of the springs is added into the
energy matrix for the shell. The various springs are shown in Figure 2

and the method of applying these springs will be demonstrated for the base
spring k). Specifically, the cone geometry will be considered in this
discussion unless indicated otherwise.

The numerical value of each spring constant determines the method of
modifying the A-matrix. If'the spring constant is zero, the digital program
makes no modification to the A-matrix. For finite values of the lp;'ing. the
energy contribution is computed and added to the A-matrix. For example,

 the energy contribution for k) is

z'kl dw 2
(1) - i < ¥ sin x('a-y) dy! cos? (m®9)
2
ye=1

2
k] dw)
= 2%C_. —— 3 — .
m = Y'm\(dy )

y?=1 (10)

Or in finite difference form equation (10) becomes:

3
16K,Crye £'w 2
Fm(l) = ;zn (Wni1 = Wp)
3 1 00 -1 W,
_ 16K, C_el® n
= __._I.'_.ni..— {wn,vn,u.n,wn_”} 000 O Vn
6 000 O u, (11)
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where K, = kl/dz and 6 is the spacing of stations in the membrane region.
Hence, the matrix in equation (11) is added directly to the wn, 4 * " Wnt]
elements of the A-matrix. If y is defined as the 4 x 4 matrix in equation (11),
the spring energy F({1) can be written as a partitioned matrix in terms of the
displacement vector X:
3 0 0
Fil) - l‘_’fﬂ'f%f_‘_ X X . (12)
6 0 Y

Of course, before making an energy addition, any constants factored out of

matrix A must likewise be factored from the matrix F(i’. In the cone program,
®*Cpm €1 3
1-¥%

The above procedure applies to the other base spring constant K, and

the factored constant is

all the spring constants which are finite at the location of the cone truncation.
In Table I of Appendix C, the Y matrices are given for each spring constant

Kj. Also given in this table are the definitions of the dimensionless K; and
the assumed form of the displacement vector.

In theory, the procedure of adding the energies Fli) o the A-matrix

still applies, when the constraint becomes infinitely rigid; that is, K; — .
However, numarical difficulties occur when very large values of K; are used.
In order to avoid the difficulties, special consideration is given to the
infinitely rigid constraints by using connection procedures. For example,
when K; is to be considered infinitely rigid equation (10) implies:

%’3"; =0 . (13)
y=*=1.0
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Or in finite difference form equation (13) becomes
Wntl © ¥n (14)
- To impose the condition of equation (14), a connection matrix C which is a
~ rectangular matrix of size n+l by n is defined as follows:
X = CX (15)

where

. (15a)

r
[
C

and -

(15b)

-

1}
—_0 O
© - O O

o O O

The connection matrix C is used to eliminate from equation (3) the dis-
placement w ] in terms of w, in the following manner:

% x' AX = (W-T)X (3)

Now by equation (15)

% X' (c'AC)X = (W-T)CX (16)

and after taking the variation of equation (16)

(C'AC)X = WC-TC . (17)
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Equation (17) expresses a set of simultaneous equations for w, v and u with the
required boundary constraint of equation (14) imposed. The set of simultaneous
equations can be solved for X, and the desired displacement vector X obtained
from equation (15).

In Table II of Appendix C, the submatrices Y. of the connection matrices
are given for the various combinations of the infinite constraints K;. As shown
in the table, only certain spring constants are associated with a specified value
of the harmonic number m. If m =1, only K, and/or K4 are pertinent to the
connection conditions at the truncation, and the program ignores the springs
Kj; j=5, 7. For certain combinations of rigid constraints, the implied con-
nection conditions are trivial such as u; =u, =0 for K3 = K4 = . Under such
circumstances, a connection matrix is not defined and the conditions are
imposed upon the matrix and forcing vector by eliminating the required rows
and columns,

As yet, no mention has been made of the closed cone boundary conditions,
and how they are imposed. The base springs K| and K, are handled in the
usual manner. For the nose of the cone, special boundary conditions were
derived in Part A. These conditions are expressed as connection matrices for
the digital program and used in the manner already described. The connection
matrices are different for different harmonic numbers and are summarized in
Table III. As a passing parenthetical remark, notice that for m =0, the
connection matrix for the closed cone in Table III is identical with the con-
nection matrix of Table II for Kg =K¢g =. This implies that the cone with a

clamped boundary and a very small truncation behaves like the closed cone.
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This is a coincidence, since the method of deriving the closed cone condition
| was independent of the spring conditions. As shown in the tables for m >0,
the closure condition does not correspond to any of the spring constraints.
In the cone program, all of the springs shown in Figure 2 , are

applicable to the analysis. However, the cone program requires K, al-
ways to be infinite. For the ogive program, only springs K; and K, at the base
are applicable, since the shell is assumed to be closed at the nose. In
Appendix C, Tables IV and V sumunarize the energy matrices Y and connection
matrices Yo for the spring constants K; and K;, and Table VI shows the
closure matrices. Particular note should be taken of the closure matrices
which must not only impose the closure conditions on the elements of the first
few mesh points but also remove the fictitious elements w,, v,, and u,.
As mentioned in the previous section, the fictitious meash points at the nose
and base were used as a convenience in differencing the energy expression.
To remove these points, the following relation is used:

£, = 26} - £, (18)
where f can be w, v, or u. Equation (18) has been included in the closure
matrices. Likewise at the base,the fictitious point n+2 is removed by

far2 = 241 ~ 4 - (19)

Equation (19) has been included in the constraint matrices for K; and K;.
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4. SOLUTION OF THE LINEAR SIMULTANEOUS EQUATIONS

For the cone, the maximum number of simultaneous equations is 216,
while for the ogive the number of equations increases to 453. With systems
of this size, the method of solution must be selected with care, if the com-
putational time and costs are to be within reason. Standard methods of
elimination for the solution of the simultaneous equations require approxi-
mately 13/ 3 operations where i is the number of equations and an operation
is considered to be a multiplication or division. Indeed, the computational
time= would be prohibitive despite the high speed computers of today. For i=450,
approximately 5 hours would be required to carry out just the required
multiplications and divisions on the IBM 704. Obviously, solutions muist be
made using methods which take advantage of the convenient form of the
equations.

In Section 2, it was indicated that by properly arranging the rows and
columns of the A-matrix all non-zero elements can be located in 15 diagonal
rows. Such a matrix is in a convenient form for solution by the block tri-
diagonal method which permits skipping the operations on the zero elements.
The operation count for the solution is then approximately -133— ijz where j
is the size of square submatrices to be defined subsequently. By taking the
ratio of the operation count of the block tri-diagonal method and the

standard elimination meaethod, we find:

r=13..i§
i
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In the digital programs j=6 and for i=450, the number of operations is reduced
by a factor of roughly 430. Hence, to perform the required number of multi-
plications and divisions, the time is reduced from 5 hours to roughly
40 seconds. Besides the tremendous saving in computing time, the block tri-
diagonal mathod is very economical with regard to data storage,because only
the non-zero elements of the matrix must be stored.

The block tri-diagonal m=thod is defined by the A-matrix subdivided in

the following manner:

- .
A C
A = “\ . .. . (ZO)
. Cka
B By \Ak
L §

where the Ay, By, and Cy are jxj submatrices which are sized to include all

non-zero elements of the A-matrix. There will be i/j rows or columns of

such blocks. The matrix is then factored in upper and lower triangular form:
A=LU

where

=]
o
e
-
—
-l
s

J

L= B3 a3 "and U= U L2

. N A
'

"By ap ‘1

—
[V
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Note that for the lower triangular matrix the first diagonal row below the main

diagonal is the same as in A, The other submatrices in L, and U are readily

obtained.
Ql = Al
o =A-B Yi i=2, k (22)
Y; = _ai'l C; i=1, k-1

The system is then solved by defining:
LY =P (23)

where P is the original loading vector associated with A. Equation (23) is

solved by:
-1
-1 (24)
Yi = a (Pi - BiYi'l) i = zlo.‘k .
Recognizing that
UX=Y
the final deflection vector X is obtained from the equations:
X, =Y
k™ "k
(25)
Xi = Yi - Yi+1 Yi+1 i = k-lp k‘z. ) 1 .

As with all numerical methods, certain conditions or properties of the
system must be satisfied if the block tri-diagonal method is to be used, The
critical operation in the block tri-diagonal method is the computation of o{l .

The computation will fail if
‘ o *

ay
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As mentioned earlier, the A-matrix is symmetric positive definite and as will

be shown, this is a sufficient condition to assure that a; is non-singular. The

proof follows from the fact that all diagonal minors of a positive definite matrix

are non-singular,or if

r )
A C
B, A Cp
[N - \ [
Aa) - \‘ N “
. . Cia
then AY) 40 for g =1, 2,5 - - K
But
e = 4
". ‘all# 0

Now, proceeding by induction assuming nj(j=1, *++i-]1) exists, we compute 'o,il :

[ %1 1 (L ]
\ . .
. By NN
A - Ly= 2 ' :
. ‘\ . v
, CY,
‘Bi a‘ . i-1
L 4 L T

Obviously |U|# 0  and
A(i)

LOL - fofjef = o o
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Therefore
G
i o1,
1

and a; is non-singular for all i.

# 0

When solving a large system of equations, the growth of round-off error
and inherent errors is a familiar difficulty and has provided the field on
numerical analysis with a bottomless problem which has absorbed tremendous
amounts of human effort. This error difficulty persists and has not been
resolved by large computers; rather, it has been reduced to a lower order of
magnitude by the use of double or triple precision operations. However, the
numerical analyst mus;: always concern himself with the fact that some matrix
will be encountered that will cause unpermissible error in the result. Being
aware of these facts, a rnathod of improving the solution was devised for the
digital program. The method consists of computing the first solution X, and
using this to compute a residual R;, which in turn is used to obtain a
correction to the original solution. The procedure is repeated until a specified
nunber of significant figures is achieved in each component of the i-dimensional

solution. Symbolically the m=thod is as follows:

- a-l
X, = A”lb

Inll TH Lot 800




or R-=b-Axi

e 1
-1
Axi = A R.
! 1
» X4 = X +AX,
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5. EVALUATION OF STRESSES

The physical stresses are derived from the tensorial stresses by the

relation
O-Gp-' Taﬁ\;aaa "app (26)
where the a's are metrics and
rob . € qap¥d . €8 qaBp gy,
+v nYa l-y (T TO)

For the physical stresses of the cone, the following expressions are derived

from equation (26)

r !

1n 9 m(mw-u cos\ dw) .
g -cosmd |1 mu + v sin\ - w cos\ + z - )-ain)t"":'i
¢ l- v l.y sin)\ y sin\ dy, B

dv d*w
+ — - 1+ -
v 3 z dyz> a(l+v) (T To)}
o

0'”'_ sinm#® | du o mv_ .. d /mw-u cos).\ m dw
€ 2(l+ v) | dy y ysin\ dy ysin\ ,  ysin\ dy
2"
o /mw-ucosk)L
b4 y 8in \ l ‘
= .
gt cos mé dv dw v )
= 3 -z + - mu+vsin\ - wcos)\
€ L-v dy dy?2 y sin\
N\ K
m({mw - u cos\) . dw | | Y
+ - a————— - -
z< Y sin X sin \ dy)J a(l+v) (T To)! .
o
(27)
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At each mesh point along the generator, the stresses of esquation (27)
are evaluated at the outside surface, the mid-plane, and the inside surface
(z = -h/2, 0, h/2). Inorder to evaluate the stress at a particular point,
the product of the temperature difference and a must be provided as an input.
An exception for which the program does not require any temperature inputs
is the isothermal case with pressure loading. The stresses are also functions
of the displacements, which are obtained from the solution of the simultaneous
equations, and the derivatives of the displacements which are computed by
finite difference techniques. It should be recalled that the cone has two
boundary regions and membrane region. The computation of the derivatives
at junction points between these regions requires special consideration.

For the first derivativeg a standard 3-point centered difference formula
is used for all internal points removed from the boundaries ard the junction
points. At the edges of the cone, a 3-point backward or forward differencing
formula is used to compute the first derivative, The forward difference
would be used at the left edge, and the backward difference at the right edge
or base. To compute the first derivatives at the junction points of the two
regions, a 3-point forward or backward difference formula is again used and
the computation is always based upon data in the fine mesh region.

The second derivatives are computed in a manner similar to the first
derivatives. A 3-point centered difference formula for the second derivative
is used at all points removed from the edges or junction points. A 4-point

forward or backward differencing formula is used at the edges and junctions

VATD TR ST 803

SNSRI



VRS By

| with the computation based on data from the fine mesh region.

The physical stresses for the ogive are given by:

oM ¢ cos me[ 1 F. 2 z ' m?z dw
T il — + 8i (-= _( - -8 —
€o €0 1- Vz‘LRx cosp l.\ R)mu smﬁ( R) v-{cosf Rlcosﬁbw sinp z by

W z v 92w
+ I @ TR T AP A t+v) (T-T
v R ( R)GY zasz a (L+v) (T-To)

22
O .- cos sz y (l-—-) mu + sinf (l-—-—)v -<cos|3- m z QW -nnng.‘f
€o €5 1-v? | Rcosp R/ R cos 3YJ
w z, 8v 9° w‘ 1
- — +(1-= - - I T
[ gt 6 ale a ( 1+ ) (T-Ty)
-
o 1Z= € sinmb J'cosﬂo ging _ _ _m sinp w + ( l-—-) du ., mz Bw
€0 f 2(l+y) \Lcoszp R} R? coszﬁ dy Rlcosﬁ dy

+ -f—)sinﬁu-m(l~z)v+_{n_._s£f.zw+mz 2_‘:]&,

—L_ |(1-
Rlcosp( R, Rjcosp 8yJ

(28)

The finite difference formulas for the derivatives in the above expression1
are the same as for the cone program. The stregses themselves are calculatedh
at the mid-plane and outer and inner surfaces and require values of Poisson's

ratio and a normalized Young's modulus at these points.
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6. NUMERICAL RESULTS

Numerous problems have been analyzed using the digital programs, and
for problems which have a theoretical solution the analytical and numerical
results have been compared. Theoretical results are available for comparison
with several interesting cases for tiie zeroth harmonic with pressure or thermal
loading. Five of these cases are discussed in this section. For harmonic
numbers greater than zero, the number of theoretical solutions are limited
and in this report only one problem with m =1 is discussed.

For the cone, the following problems are discussed:

Problem
No. m \ a Loading
1 0 . 1489 - Closed cone - constant temperature increase
2 0 . 1489 .1 Truncated cone - constant pressure
3 0 . 1489 .1 Truncated cone - constant temperature increase
4 0 .4636 .1 Truncated cone - Linear temperature along G,
5 1 .6435 .1 Truncated cone - Linear temperature along

diameter
In all of the above problems, the (non-dimensional) wall thickness and Poisson's
ratio are assumed constant and equal to 0.00206 and 0.25, respectively.
Furthermore, only the results with 72 spaces along the generator are con-
sidered.
Problem 1 is the analysis of a closed cone uniformly heated with a
temperature change of 1000°F. The base is assumed to have no edge moment

but edge shear prevents any radial growth. This is equivalent to K; = 0 and
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K; = 0. As shown in Figure 4, the deflections w and v are smoothly varying
curves over the 73 mesh points. The abscissa has been labled with two scales.
The upper scale indicates the y distance along the generator while the lower
scale indicates the mesh point number. The first mesh point is located at
y = . 0069 which is slightly larger than the distance to the inside apex. The
first boundary region ends at station 25 and the second boundary region starts
at station 49. The membrane region between stations 25 and 49 has a mesh
spacing of 6 , where 6 = ,0276. As mentioned in Section 2, the points in the
boundary regions have a uniform spacing of 6/4.

If the base of the cone is completely unrestrained, the closed cone with
uniform heating is theoretically in a zero-stress state. Further, the dis-

placements are found to be:

2

w=-qT tan\ = - ,15001024 x 10

(29)

vE=-aT(ly)= -10x107 (1-y)
where q = 10'5. the value used in the digital program. The numerical results
from the program agree well with the theoretical values from equation (29),
for all values of y away from the base region. The maximum error was found
to be 3 parts in 1500 or 0.2%. In the vicinity of the base mounting, the
theoretical solution is not applicable because the base is assumed to be free
whereas in problem 1 the base has some constraint. The numearical solution
with the damped oscillations in w is typical of the edge phenomenon of shells.

Also shown in Figure 4 is the stress 0'2zz along the generator. The

stress is in dimensionless form and must be multiplied by Young's
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modulus € to obtain the physical stress. The stress, like the w displacement,

has a damped oscillatory character in the vicinity of the base, and away from

6

the base the stress varies from 30 to 300 psi for ¢ =30 x 10", In theory,

the stress should become zero away from the base. In the immediate
proximity of the nose, the stress has not been plotted because the structure
violates the shell assumptions and behaves like a 3 -dimensional body.

The mid-plane stress 0'2“ and the stresses oif the mid-plane are
similar in nature to (l'zzz ; that is, the stresses are large in the vicinity of
the base and become small in the membrane region. These stresses are
found to be in good agreement with theory.

For problem 2, the cone has a 0% truncation and a uniform pressure
loading. The base boundary conditions are K| = 0 and K= o,while at the
location of the truncation no constraint is imposed; that is, Kg =Kg=K7= 0.
The deflections w and v for problem 2 are plotted in Figure 5 as the solid
curves. The circled points represent the theoretical solution to the same

problem based upon the following equations from membrane theory:

p tan’r [ 3 1
W=T > h [_E.yl+v(az-l)+—z—+az lny

v:—?- tan : [(V‘%)(Yz'l)"'az Iny] .

(30)

Z2h

For the same problem, the mid-plane stresses O'Z"and 0’2zz are
plotted in Figure 6,and the stresses O'I“ and (Tln (z= -h/2) are plotted
in Figure 7, Again the circled points are the results of analytical

calculations for selected points along the generator. The agreement is seen
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to be good. For the stresses 03"~ and 03™" which have not been plotted, the
numerical and analytical results were found to be in good agreement.

In Appendix D, the complete set of inputs and outputs is shown for
problem 2. Also included in Appendix D is the program outputs for problem 3.
Both these problems have the same cone geometry but different loads and
boundary conditions.

In problem 3, the truncated cone is analyzed for a uniform increase of
temperature. At the base K; = 0 and K, = o0, while at the truncation the edge
is assumed to have no radial growth or change of slope. This corresponds to
Kg = Ky = 0. In Figure 8, the displacements w and v are shown,and the edge
phenomenon is again noted. In the mambrane region, the theoretical dis-
placements are computed using equation (29) and the error in w found to be
roughly 3 parts in 1500. Theoretically, the stresses should be zero in the
membrane region and, as shown by the tabulation in Appendix D, the computed
stresses are small, varying from 30 to 300 psi for ¢ = 30 x 106. The agree-
meant is considered satisfactory.

In problem 4, a truncated cone is thermally loaded with a temperature
distribution which is linear along the axis of the cone. If the edges of the cone

are free from constraints, the theoretical displacements are found to be:

tan A

w = - oT (1-y%)

(31)
v = - aT (y-l)z/z .
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Furthermore, the cone is found to be in a zero state of stress.

The displacements w and v from the digital program are shown in
Figure 9., The circled points are obtained from equation (31), and are seen
to agree well with the numerical results from the program. The stresses at
the mid-plane and off the mid-plane were found to he smail and in satisfactory
agreement with the theoretical zero state of stress.

The last example to be considered for the cone is problem 5 where the
first harmonic of the loading is used. The loading is a linear temperature
distribution along a diameter of the cone. The cone is free at the truncation
and constrained from radial growth at the base (KZ = o). Because of these
boundary conditions, it is not possible to obtain an analytical solution which
can be compared with the w, v and u displacements shown in Figure 10 .
However, the stresses in the membrane region should be zero or at least
small. The stresses from the digital program varied from 30 to 300 psi
(€ =30 x 106) in the membrane region and are considered to be in satisfactory
agreement with theory.

One of the first problems analyzed with the ogive program was
that of a uniform pressure loading on a shell with free edge constraints.

A uniform meash having 73 points was selected. ':I‘he following table summarizes
the inputs to the problem; note that all lengths have been scaled by the length

of the generator:
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Bo = .25 radian wz) = .25 for all 2
R = 4.0 «(z) /¢g= 1.0 forall x
= .00125 p/e, = .25x 1077

m = 0 K =K,= 0

The resulting deflections are shown in Figure 11. As a comparison the

membrane solution

v =- (p/:‘;) al cot ¢- % sin ¢, [cot¢ cscé + n (cot¢/2)]
+§ sin? ¢ [cot.p csct+ 2 cot ¢] - sin ¢ sin ¢,

w=v cot¢-5.?1.‘_§)_.§z_ 5{.21 :- _;.

e

has been calculated for -even.l. values of ¢ and as seen in the graph, the
agreement is good. It is to be particularly noted that the maximum v and
minimum w do not occur at the extremity of the nose, but are located at about
station number 4. This phenomenon is predicted by theory. The ogive
program has not been used to compute stresses since that part of the program
is undergoing modification. Stress results will be described in subsequent

scientific reports.
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7. CONCLUSIONS

The digital programs enable the design engineer to make detailed
investigations of the structural requirements for ogival and conical radomes
under thermal and/or pressure loading. The programs can be used to analyze
the radome for any flight mission, provided the required thermal and pressure
loading is known. For a defined load, the program provides the design
engineer with (1) the displacements w, v, and u at the mid-surface of the
shell, and (2) the normal and shear stress at z = -h/2, 0, and h/2. This
information is given for n + 1 points along the generator.

Besides investigating various loading conditions, the programs can be
used to investigate different methods of mounting the radome. In the cone
program, no radial growth at the base is allowed, but any degree of edge
moment constraint can be specified (K; = 0, finite or o and K; = ). At
the truncation of the cone, any arbitrary constraint can be imposed by
specifying the proper combination of spring constants. In all, there are 5
springs at the truncation, each of which can be specified as zero, finite or
infinite. Hence, a conical radome with a nose boom can be investigated for
various amounts of flexibility in the boom. In addition, the cone program
can be used for the analysis of the closed nose structure. The ogive
program has been constructed for the closed nose condition only. At the
base of the ogive, completely general constraints are permitted; that is,

both K; and K, can be zero, finite or infinite.
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All of the numerical results discussed in Section 6 are for the spring
constants zero or infinite. Problems with finite springs at the edges are
omitted since suitable analytical solutions are not available for comparison
purposes. However, the programs have been used tc analyze systems with
finite springs, and as the value of the spring constants was varied from zero
to larger and larger values, the results were observed to change in a
consistent manner from the zero constraint case to the infinitely rigid case.

The numerical results indicate that the digital program for the cone
accurately computes the displacements and stresses for pressure and/or
thermal loading. Any discrepancies between the numerical and theoretical
results are indeed small and well within the requirements of the design
engineer. Similar remarks are applicable to the ogive program regarding
the displacements.

It is concluded that the combination of the above cone and ogive programs
make possible a detailed examination of any conical or ogival radome for
all nose and base boundary conditions, material properties and load dis-

tributions of practical interest.
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APPENDIX A

FINITE DIFFERENCE FORMULAS FOR THE CONE PROGRAM

The free energy expression as shown by equation (7) involves zeroth,
first, and second derivatives of the displacements and products thereof. For
all of the terms not involving a second derivative, the following difference .

approximations are used:

2 N r-2+r- 12
redy = -1 " itl 5,
y =2 dtl
N
1
\g(r')zdy =2 (1'1.;.1‘1'1)2 -
1 i
N ,
j\r'l'dy =Z‘ri+1"i)('i+1'°i) 5,
1 i

J re'dy = 7 (ryprtridsg-s)

where b; is the spacing of the stations at the ith mesh point, r and 8 are any
of the displacement w, v, or u, and N is the number of spaces along the
generator. The above formulas apply without any modification to a uniform or
variable mesh size.

For terms involving the second derivative of a displacement, special
consideration must be given to the junction points between the membrane and
boundary regions. Let the junction points be called N1 and N2 for the left and

right boundary regions, respectively. The finite difference forms are then
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where a and b have the following values for the various regions

left boundary region a=2 ; b=Nl-1
membrane region a =Nl+l; b =N2-1

right boundary region a=N2+lyb=N .

2
Nt SNt

+
Nl

)

H
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APPENDIX B

FIVE-POINT GAUSS QUADRATURE COORDINATES AND WEIGHTS

qp = -.906179846 a; = .236926885
qp = -.538469310 ay = .478628670
q3 = 0 ay = .568888889 -
q, = -538469310 a, = .478628670
g5 = .906179846 ag = .236926885
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APPENDIX C
TABLE I
Energy Contribution from the Boundaries of the Cone
Ky aj ¥; (m$1) Yi(m =1)
-~ a WA AT e A v st e B W e SARRA —— ww{
ki | 16(-yAsind| [ 100 -1] fw, <
Kl‘:;z 52 000 O Vo same as m >1
000 o0 Yu,
-1 00 O Wn+tl
k
Ky =—‘-§ (l-vz)link [conz x] {wn} same as m zl
k3
K3=¢ (1-v2) /% none [1] {“l}
- ~ - ~ -
000O0O0 O w1
000O0OO0O O
k vl
Kot | 26042 ome 00100 -1{ |u
47 13 |wsPcos?y 00000 0fywyf
00000 O] |v
00-100 1 u
- 4 L2
1 00-1 0 0] (]
000 0O00O v
ks | 16(1-%)a -l
000 0O00O0 fw
Kg = 1
5712 | goeser 100 000 Swyf none
000 000O0| |vp
;10 00 0 0O
ik -~ J 2l
r.cc'.u?'). -sin\ oolﬂ Pwl
K6=';— (1- 2)& sin \ s none
L- sin\ cos\  sin® Vi
-
e o]
sin\cos\ consz v
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TABLE I
Connection Conditions Yo for Various Combinations of
Infinite Spring Constants for the Cone
Spring Combination Yf: Qn<>1) v yi (m = 1)
1 0 O Un-1
01 O W, <
1 0 0 u,
Kz Wne1 = 0 Wnel = 0
K} and K, Wpn = Wn41 = 0 Wp = W= 0
K3 none u = 0
(10000, [w]
01 0 0 0 Vl
00001 \ 7
Ky none oo100| Sv, f
00001 .
- - - o
, — e
K3 and K4 none y = uy = 0
’ ——— - -l - - -
0o 0 1] [v
1 0 0 ul
Ks 0 1 0 qwo } none
0 0 1 vy
L ss o 1 e e
r~ ~ -
tan\ 0-"1 Vl
Kg 1 0 Ju | none
0 1 w2
e - N R e e
[ 0 1 9 r“l i
0 cot) w2
KS and Kg { 1 0 $v,s { none
0 l “2
S N i L
i
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TABLE II (Continued)

ke wimar i a ms B e e e ey ey SRR ARt % e ol VAR T ) BARE e

Spring Combination Ye {m § 1) Y: (m = 1)

< - o s eviemvramall e vs emes ) Mera e e s L e

K, -cotx | [ v
u none

K5 and K7 none

o~oo
[ g
ok
e
<
S o
N

Kb and K7 W =V = 0 none

K5. Ke¢ and K7 W] =V =W, = 0 none

B A R T ..4». . —
%
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TABLE III

Nose Closure Matrices for Cone

- ——

Yc (m = Ye {m =1) Yo (m > 13

TR E 7 ]
0o 1 W (l-.qq O q cos Wy wy =V == 0
0 cot) A7) tanx 0 - csch vy W =v.=u =0
1 0 vy f qcosn O (l+q cos?)) u 27 72 2
0o 1 W uy 1 0 0 W3

L J i 0 0 1 i o

6 -
where q = —3 and y, =y at station 2.
4 y, sin" )\

AADD TR 59-22
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TABLE IV
Energy Matrices for the Base Connection Springs

iMoment Spring, modulus K,

C 1 1 107
o o0 - — 0 0 0 0| |w
262 267 2Rb ’ n
0o o o o0 o0 o0 O O O Vn
i
6o 0 0 0 o0 0 o0 o0 O ju,
1 1 i
-— 0 0 0 o0 - 0 o w
26% 3 357 { n-i'lL
Kijy..L o o o L o _L o o} ¢v
Z"Cm(‘/‘O‘Rlc“ﬁnﬂT ZR% R ZRb o+l
0o o o o O o0 0O o0 O uL
L L ! |
0 0 0-—5 >0 0 T o o0 iwmz
6o 0 0 0 0 0 0 0 0, |v.,
6 0 0 0 0 0 0 0 0] ‘u,,l
. J - J
Radial Growth Spring, modulus K3
~ r “
conzpnﬂ -sinf__ cosd 0 0 0 0 Wn+l
L . 2
~oind 0By SRy O o 0o o | Vnt1
K 0 0 0 0 0 O0i u
2 n+l
Z*Cm(‘/‘o)Rl‘:”Bnﬂ—z— " 5
0 0 0 0 0 0; w,,
0 0 0 0 0 0. v,
|
0 0 0 0 0 0, uy,,
b
L J v .

These are form > 1. When m = 0 delete rows and columns numbered

3, 6, 9 in the first matrix and rows and columns numbered 3 and 6 in the

second matrix.

WAID TR 59-22 820
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TABLE V

Base Connection for the Radome Ogive

E

- M= — = —A— "
g m K] M [ -]
=S
- B £ B S E A GRS
N ARG o G i

~: I o r 1 ali n)

- OCOO0O~O0O0O0NOO OO0 ~O0DO0O0O0O0 OCO~0O0O0O0O~ 001000001-.

Al

m_ OO0 ~0O0O0OO~ CO~O0O0O0O0O - OmMOO0O0O0O0O1O0 O~O0OO0O00QO O
!

T! 040000070 O~00O00O04O H0O0OCOOmOO ~OOOOO~OO
, F ) )
: “~OO0O0O0O0~00 ~O0000O0O~00
~f _J L J
P .

}
: +
R R £ o g o
I G G B ¥ B s

! 5 r Y g

m_ ©O—~O0OQCO-~p ©O~0O0O0O~¢ ~0 00O - K- X- oK)

~
i ~oO0O0~O ~000~O0 \ - —

w.r J C J

-]

Q

owd

]

o

.mﬂ -

e S e ¢S -
- b Py

S 23 23 5 g 238

2 oL 8 i 4 i3

.m ~ ) f

o —_—l s -

o M M X % X X

821
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o

Form=0:

TABLE V1

Nose Closure for the Radome Ogive

~ -
'ZRG" 1 0 vl
2 0 -1 w2
1 0 0 .
0 1 0 *
0 0 1
- -
Form > 1:
- T ]
1 0 0 Wz
0 1 0 v2
0 0 1 u,
0 0 0 .
0 0 0 :
0 0 0
1 0 0
0 1 0
0 0 1
_ J
Form = 1:
Pt e r. r. -
26 - 26 - 268inf) | 0 0‘] V1
R (Rlcoszﬁ)l (Rycos? g)
2 0 0 -1 0 uj
- 26 - 268inB; ¢ 0 p ! wy
(Rycos ), (Rycos ), LY ?
tan g, sec B 0 0 0. V2 |
i
1 0 0 0 0 u,
0 1 0 0 0. .
0 0 1 0 0 L’
i
0 0 0 1 0 "
0 0 0 0 1J
L
WADD TR §59-22 822




APPENDIX D
DIGITAL PROGRAM OUTPUTS FOR PROBLEMS 2 AND 3
GASL OU26-32000 FRSB 2 Q24599

INPUT

CLASS & HET2 HERMINILE 0. ANGE 0,1437E-00 A% 1. 0000E-O1
SFRING CCHS

THICK.® 0.2060E-02 NUg 0.2500E-00

0. a. O 2. 0. 0.
PRESSURE

0.90€ Q4

0. 2500E-05

WADD TR 59-22 823



o

SUTPUTS

os Y
1 QA 000
2 0.1062
3 0.1125
4 0.,1187
S 0. 1250
[ 0.1312
7 0.1375
e 0.1437
9 0.1500
10 0.1962
1" 0.16525
12 0. 1387
12 0.1750
14 0.1812
15 0. 1875
16 0. 1937
17 a@. 2000
18 0.20582

19 0.212%5
20 0.2187
21 0.2250
2 0.2312
23 0.237%
24 0. 2437
25 a, 2500
26 0.2750
27 0. 300
23 0. 32%0

29 0. 3500
20 0, 3750
3t 0. 4000
2 0.4250
32 0, 4500
34 0. 4750
k4] 0. 5000
36 0,52%0
37 0. 5500
38 0.5752
39 0. 4000
40 0,6050
41 0,1500
2 Q.6750
42 0, 7004
44 Qa, 7250
45 0, 7%00
405 0,77%0
47 O, BNO0
4% Q. 8257
49 ¢, 2500
S0 0.85u2

WAID TR 59-22

MISSILE AT LSCATICH

W

0, 33746448E-05
0.34119216E~15
0.34479228E-05
0.34843457E-0S
D.3522%319E-05
0. 35620049E-0
7. 36027664E-05
0. 354484 35E-0S
0.36882617E-05
0,37230427E-05
0.37792049E-09
0. 33267649E-05
0,38757375€-05
. 39201 360E-US
0. 337797 21E-08
0.40312561E~0S
0.40859975E-0S
0.41422040E-1015
0.41998876E-09
0.42590712E-05
0.43197922E-05
0.438201S2E-05
0.44454:03E-0%
S3E-0%
0 %9 3E~01%
0.48600710E-0S
0. 51657 250E-05
0.%54979076E-05
0.5353¢727E-05
0.63247204E-05
0. 66405 S4E-0%
0. TOTI46S4E-0S
0.7927a85E-0S
0.80086T18E-05
0.25150774E-09

DL I0ACTIRRE~-OS
Q.9:02¢6823E-C%
2,101 e JE-s

0. 107934 1E-Da
D114 26S01E~Ce
0,120 AUE=-tiy
Q.127 TRE-e
0.13477723E-0
D 1921 229aE-09
0.,14972292E-04
Q1577743614
0. VS DGE -4
0. 174095 1aE-"14

0. TIMER
v

0. 20EI2991E-04
O, J0T1ETTEE~D4
0.20732736E-04
0. 20756079E-04
Q. 2076210%E-0%
0.20775083E-04
2.20780215E~04
0. 20720485E-04
D Z0TTTEESE-08
L20TTIIGHE~D4
L2070 54 2E 04
s 20T7428ME-Q4
D733 14E-04
G.20714395E-N4
0. 2Us9Z2816E-09
0.2066344B8E-04
0.204913%3E-04
. 2061 1570E-04
D, 2NSTIZIAE-D4
0. 20544 271E-O¢
0. 2090631 0E-04
0. Z0eBERTOE-04
0.204244R84E-04
0, Z0EATIGCOE-D4
UL I3322TE-04
0,20 21856E-04a
0, 1937SH11E-04
0. 1959445cE-049
Q. 192792341k ~04
ZtD2ZE-09
D 129501 21E-Jq
D151 37150E-04
0. 176 2903E~09
Q172105 3K -4
0, VA I00S8E -4
1 722E-04
Iq 3E -4

[

0.1 E022041E-Ca
G 12302320 E-049




SUTFUTS MISSILE AT LOCATICN O, TIME® @,

F2s ¥

St 0.862°%
52 0, 8687
53 0.37%0
S4 0.28t2
S5 0,227%

56 0,8937
57 0,900
55 0.9062
59 a2s
60 0.M&7
61 0,950
62 0.9112
63 0

[} 0.7

6% 0.9%5010
(<3 0.9%52
67 QaM2%
55 0,287

&9 0. 9750

7
72 0.,9917
72 f.0000

WADD TR 59-22

Iy

0, 18710452E-04
I12ISE~N9

3,1219%
0, 192208
0. 12:02109E-049
Q19834 70E-D9
O 200 1415E-Us
0, 20224466E-04
O, 20504 210E-04
0, 2072I200E-Us
0. 2095013 2E-04
0,21 202800E-09
B 211011 2E~Dy
0, 219091 NTE-O4
O, 224 T10STE-Q4
0, 2307012 3E-D4
237294 I0E-04
0, 2H1NS92TE-O
0, 2I8138433E-04
B2t M3 220E-w
D,17CSTERE~04q
Do ADZ1Z593E- g
.

v

0.59771924E=-0S
0,57375689E-0%
0, %493 1093E 115
0, S2528193E-0%
0.50077TO0SE-0S
0. 47807S22E-0S
0, 451124%8E-05
0.42512403E-05

0,375 BEE-D9
B I49T732992E-05
0,32389653E-0S
0. 29792182E-05
O 271237 20E-029
0. 245904921E-09
0.22000341E~035
D.1764S1722E~-0%
0. 169043507E-0%
Q143148 28E~0%
D, 1156781 6E~0%
0. 344905 2E -0
0. 43203NSTE ~iha

o,

825



OUTPUTS

POS

ABWUN=OVODNGCADUN-

- ah s wa —- -

16

¥

0.1000
0.1062
0.1125
0.1187
0.1250
0,1312
0.1378
0.1437
0. 1300
0.1562
0.162%
0,1687
0.1750
0.1812
0.1875
0.1937
0.2000
0.2062
0.212%
0.2187
0.2250
0.2212
0.,237%
0,.2437
0,2500
0.2750
0. 3000
0. 3250
0. 3500
0.3750
0.4000
0.4250
0.4500
0.4750
0.5600
0.5230
0.5500
0.5750
0.6000
0.6250
0.6500
0.6750
0.7000
0.72%0
0.7%00
0. 7750
0. 8000
0.8250
0.8500
0.8%62

WADD TR 59-22

MISSILE AT LOCATION 0,

SIGMA=-11,1

~0.16791730E-04q
~0. 18084S501E-04
-0.19200213E-04
~0.20339691E-04
-0, 2148704 3E~04
-0.22633800E~04
~0,2377908%E-04
-0.24923291E~04
~0,26066673E-04
~0,27209377E-04
-0,28351505E~0a
~0.29493139E~014
~0,30634241E~04
~0.31775197E-04
-0, 32915725€-04
-0, 34055968E-04
-0, 3519%5957E-04
~0.36335652E~04
~0.37T475145E-04
~0.38614919E-04
-0.39756214E-04
~0.,40899T01E-04¢
-0.420290S1E-04
~0.43148762E-04
-0, 44214238E-04
~0.48865071E-04
~0.534§797SE-04
-0.57970725€-04
-0.62523217E~04
-0.670753S3E-04
—0. 162721 2E~Du
~0.76176863E-04
~-0.807302%53E-04¢
-0.85281717E-D4
~0.89232979E~04
=0.94384133E-04
-0.98933264E~-04
=0.10248621E~03
~0,10803733E-03
~0.1125E830E-03
=0,11712924E~03
~0.12169015E-073
-0, 12C29104E-03
=3 V13079V92E-03
-0,13%34272€
=0, 139Q92%0E-(:3
—0.14443332E-03
-0, 19§99776E-03
~0,1%362811E-03
=0,1547339E-03

TIMER O,
SIGMA-11,2

~0. 18030007E~04
~0.193403%59E-04
=0.20453409E~04
~0.21593119E-04
~0.22731265E~04
~0.,23870723E-04
-0,2%009918E~04
-0.26148878E-04
-0.27237702E-04
~0.28426433E-04
~0.29565082E-04
-0, 30703660E-04
~0.321842171E-04
-0.32980643E~-04
=-0.341190%7E~D4
-0.35257421E-04
~0.3639%729€-04
-0.37533955E-0q
~0.38672221E-04
-0, 3981100%€~04q
~0.4098107GE-04
~0.42091%72E-04
~0.43224227E~04
~0.44327S19E-049
~0.453385437E-049
-0.5C0%82566E~-04
~0.%54606122E-04
~0.59187979E-04
~0.63709895E~04
-0.6826173JE-04
-0.72812489E~-Us
~0. 773351 91E-D4
=0.8191:845E-09
~0.86462461E-04
~0.21020044E-04
-0.995715SME-N4
~0.,10012311E-03
~0.104:T442E-03
-0, 10922611E-03
~0. 14 3F775RE-03
~0.112332903E~03
=0.12282047E-03
=0 1274219 E-Q32
-0 12198323 2E-03
=0.1369397T4E-02
~0. 14 1DBLIE-03
-0, 14533684E-03
=0, 15019436K=-03
~0.1%4279732-03
=0, 188930 7IE-D3

- -0,42

SIGMR~11,3

=0, 19455G06E~-04
-0.207713726~-04
«0.218897T02E~04
=0, 22999214E-04
~(0.24119069E-04
~-0.25243206E~-04
~0.,26369160E-04
~0. 2749G4TIE~04
~0.28624961E~04
-0, 297544 7%E~04
-0, 30834373E~D4
~0.32016026E-04
=0, 22147321 E-04
~0.34280220E~04
~0.3%5413093E-04
-0, 36546403E-04
-0.3768007SE~-04
~0. 3881 407SE-D4
~0.29943536E-04
~0.41083012E-04
2204926~04
-0, 433553G4E~-04
~0.444797IGE-D4
-0,45574704E~04
-0, 466231 IGE-D4
~0.951300437E~04
=11, 5584 9425E-04
-0.6039601 3E-04
~0,69942627E-04
-0.69491953E~04
<0, 74040319E~-04
-Q. 785901 1RE~D4
~0.83139764E~09
~0.376876033E-04
=0.9223735GE~04
-0.96790206E-04
~0. 1013407 2E-03
~0. 1058913302
=0 11044 215E-D3
=0, 114972302€-03
=0 11954 29RE-03
~U. 12400502E-03
~0 1 23EAGT4E-03
-0, 1 2312T730E-03
~N.13T7T7RB5E-N3
=0.142299RE-03
~0.1465%032E-032
=~ 15191 182E-073
“0, 1560306 2E-03
-1 15714 737E-03

SIGMA~22:1

0.1931 t907E~06
~-Q0,82571720E-06
-0, 17836806E~05
~0.27791499E~-05
-0, 37374125E-05
-0, 46560609E-05
-0,5%419897E-05
~0,64001835£-05
-0.72342346E-0%
~0,80470191E-0%
~0.86410129E-095
~0,96182880E~05
~0, 10330529E-04
~0,11129633E-0¢
-0.11866%33E~04
-0.12592667E~04
-0.13308939E-04
-0, 140161 16E-04
-0, 14714771E~04
-0, 1540%632E-04
~0. 16091 334E~04
-0.16773733€-04
-0.174735353E~0%
~0.18162712E~04
-0.13841048E~04
-0, 21319054E-04
-0, 23852156E-04
-0.26377229E-04
-0.26353323E-04
=0.31311369E-04
-0.33743070E-04
-0, 35155882E~04
~0.38553338E-04
-0.40933019E-04
~-0.43311703E-04
-0.a56 7601 0E-04
-~0.48032235€-04
-0.5033142%E-06
~0.52724453E-04
~0.55052087E-04
~0.57394920E-04
~0.%9723502E-04
~0.62N43291E-04
~0.643:9675E-04
-0.66463802G6E~-04
=3, 6303 3529E-04
~Q. 71314320604
=-0.73009895E-04
~0. 7597185 2E-0n
~0, T6S24352E-0%

SIGMR~22,2

0.41193440E~08
~0.10935022E~05
=0,21316909E-05
~0,31284539€-09
~0.40823968E-0%
~-0,49992690E~-0%
~0, 5884 3888E-03
~0.67419467E-0S
~0.75734239E~-09
-0.83877041E-09%
~0.91812654E~09
~0.99581645E~09
~0.,10720186E-0¢
~0.114G8901E-04
-0, 12208396E-04
=0, 12931456E-D4
-0.13647513E-04
-0, 14334641E-04
-0, 135033591E~04
~0.13743086E~04
-0.16429863E-04
-0. 171088 71E-04
~0. 17782918E-04
-0.18451314E-04
-0, 191 10606E-04
=0.21648265E-D4
-0.24199549E~04
~0.26714884E~04
~0.29196014E-04
~0.31649634E-04
-0, 34080935E-04
~-0.36493862E-04
~-0.38891495E-04
~0.41276261E-04
-0, 43630087E~04
-0.46014541E-04
~0.48370916E~04
-0.50720260E-04
=0.53063451E-04¢
~0.95401221E-04
~0.57734220E-04
~0,60062960E-04
~0.62387905E-04
~0.64709445E-04
~0.67027929E-04
-0.693436S0E-04
~0.71656296E-04
-0.73963773E-04
~0.762991 72604
~0.76373956E-04

SI1GMR-22, 3

~0. 231 71109€~06
=0.14090763E-05
~0.2%5204760E-0S
=0.35159244E-05
~0.44G632766E-0%
~0.53763673E~-05
~0.52588915€-0%
-0.71142067E-05
~0.79456701E-05
-0.87%61360E~0%
~0.9%480711E-0%
-0.10323502E-04
~0.11084200E-04
~0.11831701E-04
~0.12367286E-04
-0.13292127E-04
~0.14007234E-04
~0.14713620E-04
~0,15412222E~04
~0.16103746E-04
-0.16787031E-04
~0.17457064E-04
~0.18107880E-04
~0. 18757024E-04
~0.19396789E+04
~0.21992570E-04
-0.24%50732E-04
=0.27065234E-04
~0.2934%5468E~04
-0.31998361E-04
~0. 34429063E-04
~0.36841492E~04
-0,39233708E-04
~0.41623124E-04
~0.43996653E-04
~0.46360867E~04
-0.48717035E-04
-0.51066208E-04
-0.53409255E~04
=0.95746918E~-04
~0.98079813E-04
~0.60402475E-04
~0.52733363E-04
-0.65054358E~04
~0.6T7373287€-04
-0.6HE85951E-04
~0.72002377E~04
=0, /4322614E-04
~0.76631602E-04
~0.77232334E~04



s ISR Y

SUTPUTS
POS ¥

3 0.862%
52 0.3687
53 0.8750
54 0.8812
SS 0.8875
36 0.8937
57 0. 9000
S8 0. 9052
39 0.9125
60 0.2187
61 0. 9250
62 0.9212
63 0.92375
G4 0.9437
65 0.9500
66 0.9562
67 0.9625%
68 0.9537
69 0.9750Q
70 0.9812
n 0.9875
72 0.9937
73 1.0000

WAID TR 59-22

MISSILE RT LOCRTION O,

SIGMR-11,1

-0.1558416%E-03
~0.15696640€~03
-0.,15810367€~03
~0.15924823E-03
-0.160393%0E-03
-0.16153012E-03
~0,16264439E-03
~0.1637T1873E-03
~0.16477688E-03
~0.16569748E-03
~0.16663840E-03
~0.16767194E-03
~0. 159021 33E-03
-0 1T103G094E-02
~0.17414726E-03
-0.17868247E-03
-0.18449451E-03
-0.19032622E-02
-3.19297563E-03
~0.18650636E-03
0. 16209376E-03
-0, 10954704E-03
~0.38231540E-04

TIMES 0.
SIGMA-11.2

~0.15704511E-03
=0.1531694E-03
=0.1393030%E-03
=0, 1:0441583E-03
=D, 16157233E~03
~0.16270417E-02
=0.163B0789E~0D3
~0.16487895E-02
~0.,16521480E-03
=0.16693483E~-03
=0, 16800074E-03
~0.16927904E-03
=0, 17085266E-03
-0,17302692£-032
~0.17618138E-03
-0.18005618E-03
=0.12404011E-03
~0.18632895E-03
~0.18350527E-03
~0.17039808E-03
~0.134089364E-03
=0.90595940E -0
~0.21999229E-04

SIGMR-11, 3

~Q.13826757E-02
=0 15931 I9E-D23
~0. 16OS2I11GE-D3
~0 16135 3%R2E-03
~0.1527R3153E~-03
-0 1GIBDODEE-O3
-0, 16493360E-03
~0.1660TT724E-02
-0.16711066E-02
=0 1681 3990E-03
~0.1693B076E-03
-0, 170%2372E-01
=0, 1 T270145E-03
-0.17517442E-03
~0.17823413E-03
~0.18144T771E-03
-0.183:0373€-02
-0, 18234763E-03
~0.1740523GE~03
~0.15430561E-03
=0 1 PITI200E-03
-0, T1ES1222E~09
-0, 516631 79E~-0S

S1GMA-22,1

=0, 77075964E-04
-0, 7TASS396E-04
-0.78247329E-04
-0.75343734E~04
~0.794501S1E-04
-0, 20080215E~04
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1e000VE~V2
14 000VE-02
1o VOOVE=V2
1sV00VE=V2
1o VUOVE=-VU2
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1sV00VE~VUZ
1eV00UVE=V2
14VU00VE~02
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1eV00VE~U2
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1,0000E=-02
140000E-02
14000UL-02
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LIST OF SYMBOLS

P pressure

€ Young's modulus of face material

a thermal expansion coefficient of face material
v Poisson's ratio of face material

€c Young's modulus of core material

ac thermal expansion coefficient of core material
Ve Poisson's ratio of core material

'Tij stress tensor

"ij strain tensor

gi displacement vector (tensor quantity)

ay;, ai"i metric tensor (covariant, contravariant)

ud physical displacements

gl physical stresses

h¢ core thickness

h_ outer face thickness

h, inner face thickness

AT temperature relative to a datum level

J volume elemnent or Jacobian

~

J value of J at y3 = 0 (= surface area element on shell

mid-surface)

free energy

£3

virtual work
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apyd

curvilinear shell coordinates, yl = circumferential,
y2 = meridional, y> = normal, inward

alternate symbol for y! = longitude angle
indices ranging over 1,2,3

indices ranging over 1, 2

(no subscript) pertajning to face material
pertaining to core material

pertaining to (inner/outer) face shell

pertaining to mth Fourier coefficient
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1. INTRODUCTION AND PRESENTATION OF SANDWICH SHELL

ASSUMPTIONS

Following is an extension of the analysis of homogeneous shells described
in Part A of Chapter IV to shells of sandwich type construction. | The geometry
considered is that of Figure 1; i.e., a shell of revolution with core material
of thickness h, and with an outer face-shell of thickness h_ and an inner
face-shell of thickness h,. The coordinate system yl y-z y3 is the same as
that used in the homogeneous shell analysis.

In accordance with the accepted practice for shell theory and for
sandwich construction, the following assumptions are made. First, in the
face plates

T” = small of high order (1)
N,y = small of high order . (2)
In the core, infinite rigidity is assurmed in the normal direction
i.e., 1, =0 (3)
and 7 = small of high order . (4)
Zero rigidity is assumed in the tangential directions;
e, TH 27 27% = o (5)

and the only core stresses of importance are ™, a =1, 2
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In accordance with the usual assumptions of sandwich theory, the face
shells are assumed to be thin in comparison with the core and, therefore,
all terms depending on the cube of the face thicknesses, hi or h?. are

neglected.

et
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2. FORMULATION OF THERMOELASTIC PROBLEMS BY MEANS

OF FREE ENERGY

Assumptions (1) and (2) for the face shells imply that the same shell
stress-strain law applies to the face-shells as to homogeneous shells. For

the tangential stresses, this law is as follows:

ap af
T . £ (29%aPY , ¥Y_ ,aB.b _fad 6
Ity (a att + 2% Y) yo T AT . (6)

af =1, 2

This is simply Duhamel's thermal stress-strain law generalized to curvi-
linear coordinates and then specialized to incorporate the vanishing of T » .
In the core, we must revert to the more general relation giving Ti) and then
specialize to T%? gince these shear stresses are the only core stresses of
importance in the analysis.
¥ —I:ES;- ( au‘3 ) np’

c (7)

where use has been made of the geometric relations derived in the homo-

geneous shell thecry section of Part A of this chapter:

a¥ = ay =1 (8)
@ = a,=0 a =1, 2, 9

Now the thermoelastic problem for sandwich shells, as for the case of
homogeneous shells, is formulated through the use of the so-called free

energy, F.
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This free energy may be defined in general as

1 ( 2 3 ij ea AT .
F = e J dv! dv® d <1- -———alln ], (10)
2 y" ay ay nij L-2v "13

In the present context, no consideration need be given to the physical nature
of this quantity. Rather, F may be thought of as the integral, the vanishing
of whose first variation with respect to displacements leads to the proper
equilibrium equations and natural boundary conditions for the thermoelastic
problem. Now from the assumed vanishing of T* it follows from the

general thermal stress-strain law that

AT
0 = ¢ + Y 20 h + . ¢ea ) (11)
ey | M 1-2v [ naﬁ a3 -2y

This may be solved for n,; to give:

l-v vao"3 {(Ll+v)
n + — = AT
» (l-Zv) zv MeB T oz °

(12)
or
-V l+v

l-v

aAT .

ap
a +
T l-v LY
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Substituting this into the integrand of (10) and eliminating the contribution

of T% , the integrand of the free energy, F, becomes:

ij _ . tadT ij =14 vab a3
AR M Ly Ny ST ngp *T

(13)

€aAT ap v _.af l+v
O e m———— a - ——— a + GAT .
1-2v [ Tap " Tap "oy

' The term involving (A’I‘f makes no contribution to the variation operation
and, hence, is dropped. The remainder of the right-hand side of (13) reduces
to:

ap a3 € aAT aaﬁ

T +7T -
nnﬁ ﬂa, l-v Nap

. (14)

Thus, the free energy expression, subject only to the restriction that T B,

is given by:

-,
L || AT
= Tjj)(-l dy ' dy* dy’ (‘T“pnap+7°’ Mas ~ ‘l_“v a“"nap) + (15)

Now the contribution of the two face-shells to F is clear. Recognizing

the insignificance of T% in the face-shells, this contribution becomes:

ap AT
Fface shells” F(f)"l"‘( )~ %JI; J dy'dy*dy® Te Mg~ - acP ﬂcp)

ace shells! vol l- v

= J(l‘ J dy‘dy dy’ -m(a“bamq» ___aaB'YG) Mo ps aAT apnu )
“4ace shells' volume

{16)
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For the core, the term ‘T‘l pqa dlropl out of the integrand of (15) due to
the assumed insignificance of core in-plane stresses ‘l’n‘3 . However, it is
necessary to evaluate the core in-plane strains n B which enter the thermal
term in (15). This is done as follows: First, since T3 is assumed
insignificant in the core, the thermal stress-strain law for the core in-plane
stresses is the same as for the face shells (6) but with core properties ¢., v,

B

replacing ¢, v. Thus, the vanishing of T *F in the core implies:

ap
0 = =< (a“sapy+_-—vc 30'336\9'1 - Scoc2 AT (17)
l"‘Vc l-VC Y6 l- VC

We require, for F, the expression for a“p Nap - This is found by multiplying
(17) through by agg: contracting on a and recalling that the metric tensors
are symmetric and that the contravariant and covariant forms of the metric

tensors are inverses of each other; i.e.,

n
o

Y
a,pafY = 5, Y£B (18)

"
—

Y=p
Performing this multiplication and contraction we find (noting that 62 = 2

since we are effectively in 2-space when summing over Greek indices)

2a. AT L 6Y  2v¢ 6y i af
- ———— a * a =
l-vc I+ VC( [-vc ) an l-vc a ﬂnp . (19)
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Thus, we have the required expression a®P nggfor the core.
Now this together with (7) is introduced into expression (15) to get the

core contribution to F.

2

0.‘3 ZC(QCA-T)

S\S\é J dy! dy? dy3 (H’ a np:‘ Ty ~ ———-—_l- ve
ore

J dy'dy? dy? fc a%P q n \
Feore
jJJcore Z(HVC) *? &,/

hﬂr-

core

(effective)

(20)
where the (:),,:A'I[‘)z term is dropped since it makes no contribution in the
process of forming a first variation with respect to the displacements.

The final effective expression for free energy F is thus given by:
F =Fface shells * Fcore (21)
or
"~ /
€
F = S‘\S J dy'dy? dy? ——— (a.a'aa,‘3Y + L at paBY> n .1
Tace shells' \\(HV) L-v aB Y6
volume
._€aAT 4
l-v 3 "'lap)
(22)

re tc ap
+ . J dyldy® dy? a .
o i )

““dore
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Assuming face shell strains, temperatures, and metric elements to be
replaceable by their mean values (at the face shell mid-surfaces) and using

(%) notation to denote inner and outer face shells, respectively, this becomes:

hg
Sf
[ 3
F = 7 dy! dy? dy}f/—— a%P
c y' dy? dy Xitv) Nas Mgy

h
3=z L L
y 2

/¢ ab
1gg2/ € BY , v ,aB ¥
“‘(+JSJ(+)"V % (€(1+v,[(+)’( e ‘(+)] "ag,y vé,

€aAT,

- j) a.B,q
- *+) aq)

“l-)j} 39 "Y‘(z(:w) qr“(-) 0t s )"‘( )] LY

(-) “”( -)
€aAT, (23)
() %P
l-v ( -) na.[(3)> ‘

If the face shell thicknesses h(+), h(_) vary along the meridian, it is merely~
necessary to keep these quantities inside their respective integrals.

Thus, in the core, integration through the core thickness (with respect
to y3) is required while in the face shells, mean values (values at the face-
shell mid-surfaces) are used. More will be said subsequently about the

meaning of the face-shell mean temperatures AT

(+) and A'li_) which are

called for in the free energy.
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The possible presence of external pressure p(yl, yz) requires the

formulation of a work term W as follows:

~

4
5 dy! dy? T (y',y?) plyl,y?) @ (v}, y?) . (24)

W=
J

The variational formulation of the problem of sandwich shell response
to both mechanical (pressure) and thermal loads is then simply the following:
6(F-wW) = 0 (25)

where the variation is performed with respect to displacements and where

p(yl, yz) is constant with respect to the variation operation.
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3. DISPLACEMENT AND STRAIN EXPRESSIONS, AND REDUCTION TO

A TWO-SPACE PROBLEM

In accordance with usual shell theoretical assumptions, it is presumed
that the tangential physical displacements are approximable by first-order

polynomials in y3 and the normal displacement is independent of y3

IT“ =uly LY G vt yR)

(26)
\13 = u;O) (Yl:Yz) *

The relation between tensor and physical displacements is:

ul = g Vag; = & Vall

. (27)
no sum on i

where gi is the contravariant form of the displacement vector . Thus,

a a
u® = § 3qa

no sum on a

(28)
3 3

The strain-displacement expression within the assumption of linear

elasticity is

L
TR RN =9

commas denoting covariant derivatives. Following from (28) and (29),
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together with the orthogonality of the curvilinear coordinate system and the

independence of metric elements a;: on yl, it can be shown that:

1)

du! w? da 3 Ba
- [— 22 11 u 11
n y < an 1 4 - a ———— e
oy

2 oy 2 oy
. — ©8u? w day
N2z \[322 ayz + —Z— a—y;—
L du? ul ‘(-rr da du!
= \/a - - = Ja —bl - ija
Tlu 2 22 y‘ 4 By‘ > 11 8y¢
1 3 1
. =_1_V,a du’ 1 8 ! AT ba
13 2 11 ay3 2 ayl 4 8)’3
May = 4o & Losw W Em B3 (30)
2 22 BY’ 2 ayz 4 ay3

Substituting into (30) from (26) the strains are expressed in terms of u(%)

andu

(1) °
n /au ) \[a22 aa,“ /z ) _u da,,
%)

TR 7 e by’

ﬂzz-\azz/-jﬂ +y ._ytzlj+ __(9)_ Ba“

—— /Bu!l 1T g
e —‘-‘>+- ey C— («,)w’u“)

e \ay! By! N A 3)’

. )
1 . 1 au( ) a1l Ba
M,77 1®n “kl *7 Q- ! = (ul 4y
s 2 ) ay! 4 8y o ()

Y P 1 8y !zﬂ
"lz;"—z'\azz u o+ o) 83z /uz +y u:l)),

W ey 4 ey (31)
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These expressions for strain now permit the evaluation of nij( and
+)
n3; in an obvious manner. As in the expressions for geornetrical
() .

1(J+), a:j )' , etc., it is merely necessary to substitute for y3 the

/ ‘
h.+ hetheo
values ( < 5 +)a.nd - k%—-’)in the respective integrands of F(+) and

quantities

(-)

Now the metric tensor elements ay; and a.ij are known functions of
yl,yz. y3 as is the Jacobian J. Thus, integration with respect to y3 through
the core thickness is possible in the core contribution to F. The core con-

tribution may be integrated with respect to y3

either analytically or by
quadratures, whichever is more convenient in the numerical program. The
result, in either case, is a formulation (25) in which now both F and W are
2-space integrals (over y! and yz).

It is important to note that, unlike the homogeneous shell analysis, the
sandwich shell theory places no restriction on the shear strains n,, in the
core material. Thus, the displacement slopes ua) cannot be evaluated
a priori in terms of the u(io) but must be found as a result of the overall

calculation. This implies that five functions u&) ’ u(“l), u are

3
(o)
being sought in the sandwich problem, whereas only three were required in
the homogeneous shell problem. Hence, variations must be performed with
respect to all five of these functions in the present case. Furthermore, it

should be noted that- AT appears only in the face-shell contributions to F,

so that it is unnecessary to introduce the ‘T(o) T(l) T(z) integral

expressions which appeared in the homogeneous shell analy;si-.
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4. REDUCTION TO A SET OF ONE-DIMENSIONAL PROBLEMS BY

FOURIER ANALYSIS,

As in the homogeneous shell problem, the sandwich shell problem is
transformed by Fourier analysis from a two-space problem to a set of
one-dimensional problems for the Fourier coefficients of the displacements,
strains, and stresses. This Fourier analysis proceeds in a manner similar
to that used in the homogeneous shell problem. It is assumed first that aAT
and p may be decomposed into Fourier cosine series in yl (or, equivalently,
in @), If qAT and p are symmetric about different 6-values, then we need
merely superimpose the stresses, strains, and displacements of two separate
;-esponses with the proper angular displacement, since the present analysis

is a linear one. With this in mind, we express aAT and p in the form:

o0
aAT = T cosm ©
z m
m=o

(o0}
P = E mP cosm 8 .
ms=

Corresponding to these forms in the forcing phenomena, the appropriate

(32)

forms for displacements and strains are:

-2

u('o) = 2 m“(lo) sinm 0 “(11) = \:'l m“(ll) sinm 0

® ®
: 2 2 2
%o 2 m') c8m 9 *() E mi() <™ °

0 0
y ==
o) = ’ m¥ ) cos m 8

0 (33)
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Naz =

>
0
0
fo.e)
n = E i
12 m"llz sinm 0
L
>
l
;

co
m?]zz sm?®b

N 8nm®é
m

23 = N3 €08 mM O (34)

m
Analogous expressions apply for the corresponding stres s components, i.e.,
T is a cosine series, etc.

The detailed expressions for the strain components are as follows:

Va¥? ba,, u, 0da
LI F(mmu()+fm ul)) Byz mY (o) ymu()) m_(n). 3

dy

amuz s 8muz mu3 da,,
R e e L A
ay? 8y 2 9y

= - Va“ a, [ o) + [ ). r da,,
m™*,” > ( m‘tct)'.-y Mm (‘) +y By’ e (" °) m

- 1 m |} all Bay
m7,,* 7 H m%() - 2™ 4 By mu(l°’ Y m (ln)>
b= 21 o8t [aF g, 3 )
Nae%= 12 uw o+ 2 Ym -V Yy (35)
mi23 2 (32 mY(;) 7 7 —maf : oy (o) m-(,)
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As may be seen by inspection of the free energy expression (23) and
the work integral (24), the harmonics all decouple and it suffices to consider
' each Fourier component separately. The m = 0 component corresponds to
axisymmetric loading; m = 1, to the simplest case of asymmetric loading,
and so on. The linearity of the analysis then permits superposition of the
Fourier components with the appropriate cos m 0 or sin m @ multipliers to

give total displacements, strains, or stresses as required.
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5. NUMERICAL ANALYSIS

The sandwich shell response to thermal and/or mechanical loading is
to be solved starting from the formulation (25) together with expressions (23)
and (24) for F and W, respectively. As noted earlier, the core contribution
to F is integrated numerically or analytically. This leaves the expression

F-W in the form of a two-space integral with integrand involving the known

1 2

geometry (aij. etc.) and the five unknown functions of y* and y
a , 2 3 . Resolution into Fourier components then reduces the

(F-W) integral to a set of one-dimensional integrals over y2, the meridional

variable, and reduces the entire analysis to a set of uncoupled problems.

8 ( F- W)=0 (36)

a a 3 )

for the functions ( m“(o)’ mu(l) , mu(o)

This may be handled by any one of a number of techniques: (a) A direct
variational method may be used in which each of the unknown displacement
functions is expanded in a series of boundary-condition satisfying functions
and the variation is formed with respect to the coefficients of these functions.
(b) Alternatively, the direct variational method may be applied with respect
to the point values of the displacements and displacement slopes at a set of
mesh points along the shell meridian. (This corresponds to the method which
has been programmed for homogeneous shells.) (c) Another ﬁouibility is
to form the required variation analytically, thereby deriving the differential

equations and natural boundary conditions of the problem. These could then
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be solved numerically. Inasmuch as this corresponds closely to the direct
variational method (b) and method (b) insures the positive definite nature of
the matrix for the difference equations, method (b) is preferred. Furthermore,
method (b) eliminates the necessity for deriving the Euler equations analytical-
ly and, at the sanie time, automatically introduces natural boundary conditions
at free or simply supported edges in proper finite-difference form. Under
this method, the required integrals are evaluated by quadratures in terms of
the mesh-point values of the unknown functions. The result leads directly to
the matrix and the forcing vector for the numerical determination of these
point values. The matrix algebra problem is then solved for these point
values, and strains and stregses are calculated from them using finite

difference approximations to the required derivatives,
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6. NUMERICAL DETERMINATION OF TEMPERATURES AT, and AT.

The required mean temperature increments AT, and AT_ in the inner
and outer face shells may be determined by a quasi-one-dimensional
numerical analysis. A suitable technique may be described as follows:

Consider the one-dimensional composite slab as shown in the sketch. The

N

X2 X X4 X5 Xg 4

T NaNae '2«

Core

face and core thicknesses are those of the sandwich shell

insulated

,.__..

|
NN \4\\\\

Outer Inner
Face Face
Shell Shell

(-) (+)

Let the heat flux into the outer face at some point (y1 yz) be denoted by Q and
assume an insulated inner face. It is required to calculate the mean tempera-
ture in each of the face sheets. This may be done by calculating the tempera-

tures at the mesh points shown at a set of equal time increments At and then

defining
v v
T..+T
- v _ -
A'{+sVAt) = AT, = —E——Z—F—L ~ Treference
(37)
v v
. v _ T, +T
A'{-)(vAt) = AT_ = "*“"z""‘q"‘ = Treference
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where 'I‘:n = T (xy, 4 vAt).

The heat flux Q depends on time, on (y1 yz). and on the outer wall
temperature T:. itself. The quasi-one-dimensional analysis must, therefore,
be performed at a number of space points (y1 y-z) depending upon the nature of
the physical problem. If only axisymmetric conditions are of interest in a
particular application, then no yl-dependence of Q occurs. The reason that
Fourier analysis is not suggested for the heat problem lies in the essentially
non-linear character of the outer wall boundary conditions; i. e., radiation
is frequently important, and this involves ( T: ) 4 » and convective heat
transfer also involves T: in a non-linear manner. Thus, the functions

AT, and AT_ must be calculated first as functions of (yl, yz, t ) and then
the quantities aAT_ , aAT_ may be Fourier analyzed giving Fourier
components which depend on yz and time. The thermal stress analysis is
then carried out at a number of fixed values of time.

A mesh is chosen for the core, and the heat equation for the composite
material i8 written in difference form. These difference equations may be
put in explicit difference form with a strict upper limit on permissible time
step At for stability. Alternatively, they may be written in implicit form
with no nt;bility limitation on At . The implicit form requires solution of
(N + 1) simultaneous equations, but the tri-diagonal nature of the associated
matrix permits rapid and efficient solution. A more serious problem which
arises in connection with the implicit scheme is the necessity to iterate in

order to express heat flux Q at the latest time. This is not 2 major drawback,
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however, and much numerical experience has been accumulated in this respect.
The large gain to be realized in time-step size At recommends the use of the
implicit scheme. The difference equations for the heat problem are well-

known and need not be reproduced herein.
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